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ABSTRACT
One of the biggest challenges in building effective anti-spam
solutions is designing systems to defend against the ever-
evolving bag of tricks spammers use to defeat them. Be-
cause of this, spam filters that work well today may not work
well tomorrow. The adversarial nature of the spam problem
makes large, up-to-date, and diverse e-mail corpora critical
for the development and evaluation of new anti-spam fil-
tering technologies. Gathering large collections of messages
can actually be quite easy, especially in the context of a
large, corporate or ISP environment. The challenge is not
necessarily in collecting enough mail, however, but in col-
lecting a representative distribution of mail types as seen
“in the wild” and in then accurately labeling the hundreds
of thousands or millions of accumulated messages as spam
or non-spam. In the field of machine learning Uncertainty

Sampling is a well-known Active Learning algorithm which
uses a collaborative model to minimize the human effort
required to label large datasets. While conventional Uncer-
tainty Sampling has been shown to be very effective, it is
also computationally very expensive since the learner must
reclassify all the unlabeled instances during each learning
iteration. We propose a new algorithm, Approximate Un-

certainty Sampling (AUS), which is nearly as efficacious as
Uncertainty Sampling, but has substantially lower compu-
tational complexity. The reduced computational cost allows
Approximate Uncertainty Sampling to be applied to label-
ing larger datasets and also makes it possible to update the
learned model more frequently. Approximate Uncertainty
Sampling encourages the building of larger, more topical,
and more realistic example e-mail corpora for evaluating new
anti-spam filters. While we focus on the binary labeling of
large volumes of e-mail messages, as with Uncertainty Sam-
pling, Approximate Uncertainty Sampling can be used with
a wide range of underlying classification algorithms for a
variety of categorization tasks.

1. INTRODUCTION
To reliably test the efficacy and efficiency of e-mail classi-

fication algorithms, both researchers and anti-spam applica-
tion developers require access to large pools of recent e-mail
messages. Existing, publicly-available corpora are mostly
small (in the thousands or ten’s of thousands of sample mes-
sages), many are already several years old and continue to

lose more and more of their relevance with the passage of
time, and finally, a number of them contain either nearly
all spam e-mail or have an insufficient number of the good
mail examples required to accurately measure performance
at low false positive rates. Moreover, these public corpora
often have inherent sampling biases that make them unrep-
resentative of the e-mail traffic which is seen in real world
environments.

The creation of labeled e-mail corpora for effectively test-
ing anti-spam applications can be a difficult undertaking.
The data used to build new corpora should be selected to
match as closely as possible a filter’s intended audience and
care must be taken not to introduce any biases into the sam-
pling or labeling process that might affect the eventual eval-
uation results. Optimally, test corpora should be created by
randomly sampling representative messages from an appro-
priate data source and accurately labeling each and every
message as either spam or non-spam. However, labeling
messages by visual inspection to build even a small corpus
can be a tedious, error-prone, and expensive proposition. As
a result, the hand-labeling of large numbers of messages—
hundreds of thousands or millions—to produce an accurate
corpus is virtually impossible under normal circumstances.

In practice, most corpora are created using one of three
mechanisms. The first is to enlist several users to manually
label all their spam for some specified length of time. Any
message not labeled as spam is assumed to be good mail. It
is critical that the user does not use any technology to help
separate spam from good mail such as a “Junk Folder” as
this can introduce bias into the labeling process. But when
implemented correctly, it can be very effective for building
corpora for evaluating personalized spam filters. The sec-
ond method is to rely on user-initiated feedback such as
asking the user to express their opinions via special “this is
spam” or “this is not spam” voting buttons in their e-mail
client. The downside of this approach is that users often
have marked tendencies as to which messages they actu-
ally label, such as focusing only the most egregious spam or
rarely, if ever, bothering to proactively label good mail. A
third technique is the use of honeypots or spamtraps to au-
tomatically capture examples of spam, however these tools
are usually limited to identifying only spam e-mail and do
not provide the balanced corpus of both spam and non-spam
examples needed to evaluate most algorithms.1

1The use of user-initiated feedback can be very effective for
providing additional training examples for a live anti-spam
system. The issues raised here apply only to the use of user
feedback to create test corpora for evaluation purposes.



In the best of all possible worlds the content of e-mail test
corpora and their creation process should have the following
characteristics:

• Be as accurately labeled as possible

• Be as large as is practicable to more effectively measure
the small false positive rates required by spam filters

• Be diverse with regard to message size, format, con-
tent, MIME structure and header contents, represent-
ing a wide range of message types

• Be current with changing message features and evolv-
ing spammer techniques

• Be consistent with the end-user’s actual e-mail traffic
to better reflect actual operating conditions

• Be representative of the target e-mail environments in
the distribution of both spam and non-spam messages

• Be cheap to build—cheap, that is, in overall time spent,
computational resources expended, and total amount
of human adjudication effort required

Over the past several years our own anti-spam research
group has addressed the need for a large testing corpus by
meticulously labeling a database of approximately 180,000
corporate e-mail examples over a period of several months.
This was done using a combination of ad-hoc methods, in-
cluding the use of volunteers as the final arbiters of a mes-
sage’s classification when that became necessary. While
this dataset has proven to be quite useful up to this point,
the examples have naturally grown stale over time. As a
result there is a constant need to be able to easily cre-
ate more current and more varied message datasets for fu-
ture experiments. Our goal is to create a new corpus of at
least 1,000,000 messages. Fortunately, obtaining large vol-
umes of e-mail is not an issue in this environment. In fact,
our archive currently contains over 20 million messages just
waiting to be labeled with more becoming available daily.
The overarching impetus behind the work described in this
paper is the desire to virtually eliminate the need for hu-
man intervention in the labeling process and to automate
the building of current, fresh corpora.

2. ACTIVE LEARNING APPROACH
As a starting point for this corpus-building effort we’ve

adopted a common machine learning technique, active learn-

ing.[1] Active learning is a form of inductive machine learn-
ing whereby the learning model proactively queries a trusted
party—often referred to as the “teacher” or “oracle”—for
examples of potential interest, that is, examples which the
learner itself thinks might strengthen its future ability to
make more accurate predictions on as yet unseen exam-
ples. The defining characteristic of active learning is that,
while there is some give-and-take between the knowledge-
able teacher and the questioning learner, it is primarily
learner-driven. In other words, the learning model incremen-
tally improves its discrimination ability by constantly re-
evaluating its own performance—using some internal effec-
tiveness metrics, e.g., the information gain/loss contributed
by each example—based on what questions it has asked
to that point. Only after this introspection step does the

FUNCTION ActiveLearningLabeler(U, M, C) returns L
// Input
// U: Set of unlabeled data
// M: Batch size of query set
// C: Untrained classifier to use to label data
// Output
// L: Labeled data
While not done do

Q = SelectQuery(C, U, M)
Foreach q in Q do

l = AskTeacher(q)
U = U - q
L = L ∪ (q, l)
TrainClassifier(C, q, l)

EndFor
EndWhile
Foreach e in U do

l = Classify(C, e)
L = L ∪ (e, l)

EndFor
Return L

END

Figure 1: Active-learning algorithm for labeling
large corpora

learner select what it thinks are the next set of “best” ex-
amples to ask for during the next iteration.

Figure-1 illustrates the basic active learning algorithm ap-
plied to corpus labeling. The labeler has complete access to
the contents of a pool of unlabeled messages U during each
learning iteration as well as the ability to ask about another
batch of examples of sample size M . In this domain L repre-
sents a set of e-mail messages already labeled by the teacher.
Based on the answers (“spam” vs. “good”) the labeler re-
ceives from its questions (“What was the label for Message-

ID=X?”), the labeler reassesses what it’s learned thus far
and adjusts its next batch of questions accordingly. The goal
of this process is to shrink the amount of human intervention
involved by minimizing the total number of questions asked
by the labeler, while simultaneously increasing the labeler’s
predictive power over time in terms of the total number of
correctly labeled messages, fewest false negatives (spams in-
correctly labeled as good) and fewest false positives (good
email incorrectly labeled as spam).

3. UNCERTAINTY SAMPLING
Active learning as the basis for labeling unlabeled data

has been implemented in a number of ways using a range of
classification techniques. Uncertainty Sampling is one form
of active learning that has been used extensively for labeling
unlabeled data since it was first proposed in the mid-1990’s.
This technique, as described by Lewis and Gale [7], utilizes
a single classifier to generate a probability value P (C|w) for
an example, where C is the set of classification categories
and w is a feature vector representing an observed pattern.
This probability is called the example’s certainty score. The
score is a continuous value from 0.0 to 1.0 with 0.5 denoting
complete uncertainty vis a vis what the category should be.
The intuition here is that choosing the next sample based
on the questions that the labeler was most unsure of will



FUNCTION SelectQuery US(C, U, M) returns Q
// Input
// C: Classifier trained on previously labeled data
// U: Unlabeled data
// M: Batch size of query set
// Output
// Q: Set of examples to label
Foreach e in U do

Let R(e) = ComputeUncertainty(C, e)
EndFor
Let Q = Select the M examples from U that maximize R().
Return Q

END

Figure 2: Uncertainty Sampling

bias the labeler toward faster learning. For more theoretical
background on the effectiveness of active learning, see [14].

Uncertainty Sampling has shown itself to be quite effec-
tive, but it can also incur high computational costs, espe-
cially when run on large volumes of unlabeled data. What
follows is a paraphrase of the formal algorithm depicted in
Figure-2:

While the teacher is willing to label examples...

1. Apply the current labeler model to each unlabeled ex-
ample

2. Find the M examples for which the labeler is least
certain of class membership

3. Have the teacher label that M -sized set of sample ques-
tions

4. Train a new labeler on all labeled examples

Because the cost for rerunning the learner on all the data
each time in step 2 can become prohibitive, the algorithm is
often implemented to use large batches of questions during
each iteration. Using these large batches can make the algo-
rithm’s learning rate more sluggish however, since it cannot
then respond as quickly to new data provided by the teacher.

From the point of view of computational complexity the
original Uncertainty Sampling algorithm runs in O(I · N),
where I = W

M
(W is the total number of queries required of

the teacher to meet a specific error rate and M is the batch
size) and N represents the total size of the corpus being
labeled. In the next section we will suggest an improvement
on Uncertainty Sampling that, while it does not reach the
same labeling accuracy levels quite as fast as the original
algorithm, can make the labeling of much larger corpora
with much less human attention more feasible.

4. APPROX. UNCERTAINTY SAMPLING
Uncertainty Sampling is computationally prohibitive be-

cause at each iteration it must evaluate the uncertainty of
every unlabeled message on the current classifier. Random
sampling is not a good alternative as it converges too slowly
for a human to label large e-mail corpora. We propose Ap-
proximate Uncertainty Sampling as a compromise that con-
verges almost as fast as true Uncertainty Sampling, but re-
quires substantially less computational resources.

FUNCTION SelectQuery AUS(C, U, M, R) returns Q, R
// Input
// C: Classifier trained on previously labeled data
// U: Unlabeled data
// M: Batch size of queries
// R: Previously recorded uncertainty values
// Output
// Q: Set of examples to label
// R: Updated uncertainty values
Let T = M*log(|U|)
Let S = Select the T examples from U that maximize R().
Foreach e in S do

Let R(e) = ComputeUncertainty(C, e)
EndFor
Let Q = Select the M examples from U that maximize R().
Return Q

END

Figure 3: Approximate Uncertainty Sampling

Uncertainty Sampling re-evaluates the uncertainty of each
message during each iteration. However, the uncertainty of
most messages will not change significantly as the result of
new training data. This is particularly true of messages
where the labeler already has a high certainty in its current
classification. One method to reduce the computational cost
of Uncertainty Sampling is to re-evaluate only a subset of the
unlabeled messages during each iteration. A second oppor-
tunity for improving the efficiency of Uncertainty Sampling
is to note that it works very hard each cycle to select the
best m queries when a near-best set of queries will often do
almost as well.

At each iteration, Approximate Uncertainty Sampling se-
lects only a subset of examples to re-evaluate and then
chooses the best m examples amongst this limited subset.
The key to the effectiveness of Approximate Uncertainty
Sampling is how it selects the subset of examples to con-
sider in each iteration. Approximate Uncertainty Sampling
applies the Uncertainty Sampling concept recursively so that
the subset of examples considered is determined by apply-
ing Uncertainty Sampling to the existing subset of unlabeled
messages. But rather than re-evaluate the uncertainty of
each message, the sampling is performed using the uncer-
tainties calculated in previous iterations.

Figure-3 presents the Approximate Uncertainty Sampling
algorithm in detail. In addition to the active classifier, unla-
beled data, and batch size, Approximate Uncertainty Sam-
pling takes a fourth parameter R that stores the last recorded
uncertainty value for each unlabeled message. When it is
first called, R is initialized by setting all examples to have
maximal uncertainty.

Approximate Uncertainty Sampling begins by selecting
S ⊂ U, the M log N most uncertain examples based on the
uncertainties stored in R. The uncertainty of each example
in S is then re-evaluated using the current, most up-to-date
classifier. The resulting uncertainty values are stored in R

for use in future iterations. Finally, the M most uncertain
examples are selected from S to form the set of queries that
are returned to the user.

The key to both the effectiveness and efficiency of Ap-
proximate Uncertainty Sampling is the size of the subsample
chosen during each iteration. On the one hand, the larger



the sample size, the closer the algorithm approximates full
Uncertainty Sampling. And on the other hand, the smaller
the sample size chosen, the more efficient the algorithm.

To balance these, Approximate Uncertainty Sampling uses
a sample size of M log N as a good compromise between op-
timal query selection and computational complexity. The
computational complexity of Approximate Uncertainty Sam-
pling is:

O (I · M log N) = O

�
W

M
· M log N� = O (W · log N)

As its computational complexity grows only logarithmically
in N , Approximate Uncertainty Sampling can scale to la-
beling much larger datasets than those that are practical
with full Uncertainty Sampling which is O(N). In addition,
its computational complexity for labeling W examples is in-
dependent of the batch size M . This makes Approximate
Uncertainty Sampling suitable for using very small batch
sizes and even for re-sampling after every message labeled
by the user.

While a subsample size of M log N does provide a good
balance between labeling efficiency and computational com-
plexity, the basic ideas of Approximate Uncertainty Sam-
pling can be applied to any size subsample. In an interactive
labeling scenario where a human is labeling each query set,
Approximate Uncertainty Sampling can be easily adapted
to function as an anytime algorithm that continuously im-
proves its next query set until the human has finished label-
ing the previous set of examples.

5. EXPERIMENTAL EVALUATION
Unfortunately, we cannot evaluate these labeling algo-

rithms directly against our target corpus of 1,000,000 mes-
sages because there is as yet no easy way to absolutely vali-
date the accuracy of all the labels without personal inspec-
tion. Instead, we evaluate the effectiveness of the algorithms
by running our experiments using an existing public dataset,
the TREC 2005 Spam Track Corpus [2], for which a “gold
standard” labeling already exists. This dataset consists of
over 92,000 messages, of which about 60% are labeled spam
and 40% are labeled non-spam.

We use this labeled corpus to measure the effectiveness
of each algorithm in a simulated active learning framework
that mimics how we expect these algorithms to be used in
practice. A priori the labeler is given the contents of the
full TREC dataset, but with all the message labels removed.
At each step of the simulation, the labeler is asked for the
set of queries that should be labeled next by the teacher.
The simulator—standing in for the human teacher in this
scenario—then marks the messages according to the known
gold standard labels and passes the labels back to the la-
beler so that it can update its current classifier model. At
fixed intervals, the simulation is interrupted to evaluate the
performance of the labeler. The evaluation is accomplished
by asking the labeler to label the entire dataset and then
recording the accuracy of that labeling with respect to the
known gold standard. During the evaluation, the labeler is
not informed as to the correct label of any examples.

In order to reduce any potential bias created by the input
dataset’s ordering or distribution of spam vs. good e-mail
examples, we randomized the list of examples in the origi-
nal TREC corpus and then split that list into five separate
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Figure 4: Effectiveness of Active Learning

subsets. Each subset contains 80% (≈74K) of the total 92K
examples, with every one having a different 20% of the to-
tal original examples removed. The results shown below are
based on the average performance across all five subsets of
the examples.

All the test labelers were given the same classifier to build
their learning models. The classifier used is a boosted Näıve
Bayes classifier, but modified to use geometric mean rather
than arithmetic mean to combine the conditional probabil-
ities of each word. This classifier was chosen because it is
highly competitive with existing solutions and because its
particular implementation is quite fast and efficient, allow-
ing us to run more experiments on larger datasets. Other
types of text classification algorithms, e.g., decision-trees [3],
Support Vector Machines [6], or Expectation-Maximization
(EM) techniques [10], could be used just as well with Ap-
proximate Uncertainty Sampling for this task.

Figure 4 shows the results of applying this methodology
to evaluate several active learning algorithms on the TREC
2005 public corpus. A batch size of M = 100 was used for
this experiment to make the computational costs of running
the experiment manageable. The results show that both Ap-
proximate Uncertainty Sampling and full Uncertainty Sam-
pling perform very well on this dataset. Both achieve er-
ror rates below 0.25% within less than 3,000 queries. For
comparison, random sampling does not achieve this level of
accuracy even after 15,000 queries. While the performance
of Approximate Uncertainty Sampling is good, it does not
quite match the strong performance of Uncertainty Sam-
pling. The error rate of Approximate Uncertainty Sampling
is about twice that of true Uncertainty Sampling over the
range of 1,000 to 5,000 queries. After 5,000 queries however,
both algorithms converge to nearly identical error rates. Ap-
proximate Uncertainty Sampling requires about twice the
number of queries as does Uncertainty Sampling to achieve
a given error rate. These results demonstrate that Uncer-
tainty Sampling is still the better algorithm when it is com-
putationally feasible.

As seen in Figure 5 using our highly optimized, in-memory
classifier implementation, Approximate Uncertainty Sam-
pling averaged less than 2 minutes of processing time to
achieve a 0.1% error rate. In comparison, Uncertainty Sam-
pling required over 30 minutes of processing to match the
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same error rate using the exact same classifier configuration.
Figure 6 shows the number of queries required to reach

a given error rate using Approximate Uncertainty Sampling
for various dataset sizes. The experiments suggest a roughly
linear relationship between the size of the dataset and the
number of queries. Extrapolating out from the 4,500 queries
that it takes to achieve a 0.1% error rate on 74,000 examples,
we find that the number of queries needed to achieve a sim-
ilar error rate on 1,000,000 examples would be near 60,000
queries. Likewise, Figure 7 shows that the number of queries
required by Uncertainty Sampling also grows linearly with
dataset size. Using the same target of 1,000,000 examples
Uncertainty Sampling would require approximately 40,000
queries. Unfortunately this is beyond what a small team
could reasonably hand-label even with a week or two of de-
voted effort. Given these data points it appears that neither
algorithm is truly up to the task of labeling a 1,000,000 mes-
sage corpus as-is.

Further improvements are obviously required to make la-
beling these large corpora tractable. However, Approxi-
mate Uncertainty Sampling, because of its computational
efficiency vis-à-vis pure Uncertainty Sampling, creates an
opportunity for applying other CPU-intensive techniques to
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augment the labeling process, such as, Error Reduction Sam-
pling [11], the use of multiple classifiers, classifier aggrega-
tion, and/or clustering.

6. RELATED WORK
The benchmark algorithm for labeling unlabeled data is

Uncertainty Sampling [8, 9]. Since its introduction there
have been many enhancements to the basic algorithm. These
include Weighted Uncertainty Sampling [12], Error Reduc-
tion Sampling [11], and Adaptive Sampling [5]. Most of
these perform additional computation to choose a better
sample in order to reduce the number of queries required
to achieve a given error rate. The algorithm described in
this paper could be adapted to improve the computational
complexity of many of these other algorithms.

Similarly, other labeling techniques, e.g., Query By Com-

mittee (QBC) [13], use combinations of multiple learners to
decrease the volume of questions required during labeling.
We also see an opportunity for synergies with these types of
labelers.

Hulten et. al. [4] describe an alternative technique for cre-
ating large, unbiased corpora by making use of the collabora-
tive efforts of one hundred-thousand volunteer MSN Hotmail
users. Every day, a random message is selected from the mail
stream of each volunteer and the volunteer is asked to label
the message as spam or not spam. The Hotmail Feedback
Loop produces tens of thousands of labeled messages each
day, which would completely label our initial target of one
million messages in about three months. The main limita-
tion of this approach is that it is only viable for large ISP’s
or other very large organizations where creating a network
of one hundred-thousand or more volunteers is feasible.

The importance and the challenges involved in building a
large, labeled spam-related corpus is illustrated by the de-
velopment of the TREC 2005 Spam Track dataset [2]. The
TREC corpus — created using publicly-available Enron e-
mails — was completed after eight phases of refinement in-
cluding the use of several different classification algorithms,
as well as hand-adjudication. The goal of our work is to
make this type of corpus-building easier.



7. CONCLUSION
Building large, accurately labeled e-mail corpora for train-

ing and testing anti-spam tools is hard. While accumulating
large volumes of e-mail is fairly straightforward if one has
ready access to e-mail messages, we cannot expect their cor-
rect categorization to be left to human hands alone. Ma-
chine learning-based tools can be used to reduce the to-
tal amount of time spent in human adjudication of unla-
beled messages. An appropriate balance must be struck be-
tween the computational costs of these machine learning al-
gorithms and the burden placed on the human labelers. We
offer a variation on a well-known algorithm with lower com-
putational complexity which can substantially reduce these
processing costs. Also, because it is an anytime algorithm
it can asynchronously continue to process data, improving
on and minimizing the set of queries eventually delivered to
the human labeler.
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