
On Attacking Statistical Spam Filters

Gregory L. Wittel and S. Felix Wu

Department of Computer Science
University of California, Davis

One Shields Avenue, Davis, CA 95616 USA

Abstract. The efforts of anti-spammers and spammers has often been described as an arms race. As
we devise new ways to stem the flood of bulk mail, spammers respond by working their way around
the new mechanisms. Their attempts to bypass spam filters illustrates this struggle. Spammers have
tried many things from using HTML layout tricks, letter substitution, to adding random data. While
at times their attacks are clever, they have yet to work strongly against the statistical nature that
drives many filtering systems. The challenges in successfully developing such an attack are great as the
variety of filtering systems makes it less likely that a single attack can work against all of them. Here,
we examine the general attack methods spammers use, along with challenges faced by developers and
spammers. We also demonstrate an attack that, while easy to implement, attempts to more strongly
work against the statistical nature behind filters.

1 Introduction

As the volume of unsolicited bulk e-mail increases, it is becoming increasingly important to apply techniques
that mitigate the cost of spam. With the increasing popularity of anti-spam measures, spammers have been
forced to find new ways to ensure delivery of their messages. Their responses include changing message
content, increasing message volume, new delivery mechanisms, and attacking anti-spam groups. As such,
spam filtering has become an arms race with spammers and anti-spammers countering each other’s tactics.
Spammers’ attacks are generally simple and do not work against the underlying principles of statistical
filters. Instead, their attacks manipulate basic mechanisms such as hashing, parsing, and tokenization. In an
effort to strengthen existing systems, it is useful to examine current evasion methods as well as considering
other potential attacks against spam filters.

A basic introduction to spam filtering is given in Section 2.1. This section can be skipped by those
who already have an understanding of how text classification systems work. The remainder of Section 2
covers some of the related work in attacking spam filters. Various types of attacks against spam filters
are summarized in Section 3. Challenges faced by developers and spammers are also discussed. Section 3
concludes by considering an attack methodology and testing a refined version of a dictionary attack against
two filters. The last section, Section 4, summarizes this paper and talks about possible future directions in
looking at attacks against filters.

2 Background

2.1 Filtering Overview

Over the past few years, spam filtering software has gained popularity due to its relative accuracy and
ease of deployment. With its roots in text classification research, spam filtering software seeks to answer
the question “Is message x spam?”. The means by which this question is addressed varies upon the type of
classification algorithm in place. While the categorization method differs between statistical filters, their basic
functionality is similar. The basic model is often known as the bag of words (multinomial) or multivariate
model [6]. Essentially, a document is distilled into a set of features such as words, phrases, meta-data, etc.
This set of features can then be represented as a vector whose components are boolean (multivariate) or real
values (multinomial). One should note that with this model the ordering of features is ignored.



From here, the classification algorithm uses the feature vector as a basis upon which the document is
judged. The usage of the feature vector varies between classification methods. Two of the most common
methods used in spam filtering are rule based and statistics driven. As the name implies, rule based methods
classify documents based on whether or not they meet a particular set of criteria. Rules may be hand-
crafted or automatically generated. Machine learning algorithms are primarily driven by the statistics (e.g.
word frequency) that can be derived from the feature vectors. One of the widely used methods, Bayesian
classification, attempts to calculate the probability that a message is spam based upon previous feature
frequencies in spam and legitimate e-mail [9, 8, 1, 4]. Other notable learning algorithms applied to spam
filtering include boosting [2] and support vector machines [10, 3].

2.2 Related Work

Relatively little work studying attacks against spam filters has been done. Instead, efforts appear to have
been reactive as developers adjust to different tactics used by spammers. Recently, John Graham-Cumming
studied one type of stronger statistical attack [5]. Expanding on the concept of adding random words to a
given spam, his attack focused on the configuration of a particular filter. By doing so he was able to isolate
particular words that when included in a spam would cause the message to be marked as ham (non-spam
e-mail). Due to the effort involved his attack would not be practical to target a single user, but it might be
useful when working against a large group sharing a single filter configuration.

3 Breaking Filters

3.1 Attack types

As filtering has become more prevalent, spammers have started modifying their messages in an attempt to
bypass filters. Many of the methods that spammers use have been cataloged in the Spammers’ Compendium1.
The evasion techniques that spammers use can be roughly grouped into several categories:

Tokenization With this attack, the spammer is working against the feature selection (tokenization) of a
message by splitting or modifying key message features. Examples include splitting up words with spaces,
and using HTML (or Javascript/CSS) layout tricks.

Obfuscation Here, the message’s contents are obscured from the filter using encoding or misdirection. This
would include HTML entity/URL encoding, letter substitution, Base64/UUencode/Quoted printable
encoding, etc.

Weak Statistical Such attacks attempt to skew the message’s statistics such that a filter has trouble telling
if a message is spam or not. An attack is termed weak if its approach uses purely randomized data. Using
random words, fake HTML tags, or random text excerpts are common versions of such attacks.

Strong Statistical A strong statistical attack is differentiated from a weak one by the nature of the data
added. One can think of a weak attack as guessing what might distract the filter whereas a strong one
makes an educated guess. By using more focused ‘random’ data, the chances of successfully circumnavi-
gating a filter may be higher. However, the difficulty in developing attacks is also increased. Because of
this, the practicality of a strong attack is limited (from a spammer’s point of view). A statistical attack
can also be strengthened by taking advantage of feedback methods to record which spams made it to
end users. Examples include the attack demonstrated by Graham-Cumming [5].

Other attacks do not quite fit in the above groupings. These include sparse data attacks (spams with
only a few words or URLs), and hash breaking attempts (adding in random characters).

1 http://www.jgc.org/tsc/



3.2 Challenges

Developers face a number of problems in building an accurate and resilient filtering system. Dealing with
attacks further complicates filter implementation. Over time spam changes as bulk mailers attempt to bypass
filtering systems. This aspect forces developers to continually test against and adapt to varying traits of spam.
When testing a filter system, the selection of a test corpus poses some issues. Factors to consider in a corpus
include the data’s age, breadth (variety of sources), accuracy, and size. Age is important as the content of
spam changes over time. Sampling corpus data from a number of sources is necessary in order to get a broad
view of the types of messages being sent. Also, there are many non-spams present in the SpamArchive.org
collection2. Should such erroneous classifications be used to test/train filters, developers will have inaccurate
information on a filter’s performance. While there are a number of public spam collections, few public ham
datasets are available. Privacy issues aside, it is difficult to build a ham corpus that is representative of
differing end-user profiles. End users also provide a challenge to filter developers. Having filters tailored to
each user’s usage patterns will yield better results, but it is easier to deploy system-wide filters. End-users
marking legitimate messages as spam becomes problematic in an organization wide configuration.

Spammers also have a number of obstacles in developing attacks against a filter. In attempting to design
messages that are able to pass through filters undetected, a spammer needs to preserve as much of the
intended message as possible. Additionally, the spammer would prefer to maximize audience size while
keeping effort minimal. The challenge lay in identifying the configuration of a target. If the system is learner
based, the vulnerabilities are dependent on the dataset the filter uses to make decisions. With such goals in
mind, it is easier to attack a mono-culture of filters (e.g. organizational deployments). Together, these issues
make building sophisticated attacks against filters a hard problem for a spammer.

3.3 Attack Methodology

A major advantage filter developers have over spammers is that most of the content resulting from evasion
methods are unique to spam. For this reason, most of the simpler attacks do not work. The question becomes,
how would a spammer go about developing an advanced attack? An attack method can be divided into wants
and capabilities. In addition to balancing effort and gain, a spammer would like an attack to be repeatable.
In order to achieve this goal, a spammer must rely on either luck or strength of attack. Luck in the sense
that the attack (message) is missed by the filter or is not used to retrain the filter. Strength of attack when
subsequent attempts cannot be detected by the filter despite retraining on earlier instances. Along with
repeatable attacks, a spammer would like a way to get feedback in order to tell which messages made it to
the end user. The embedding of web bugs can perform this task assuming the spammer is able to provide
a stable way to host the bugs. The viewing of a web bug only guarantees that the message was accessed by
something. It does not supply the spammer with knowledge that the message was viewed by an end user or
left unmarked by filters.

In terms of attack related capabilities, an adversary can study the target filters from two angles. By
using an inside account he can test and refine attacks. With an inside account one can study the target
filtering system at the organizational level. While using various anti-spam tools the spammer can look for
implementation weaknesses in addition to testing his attacks. A spammer also has a few different delivery
methods available. Common methods include sending directly to the target system, using open relays, or
using a proxy to perform the message transmission (e.g. MyDoom infected machines). Other capabilities
include varying the primary spam message content/style and URLs referenced.

3.4 Example attack and results

The goal in attacking a filter is to have an automated way of transform a given (spam) message into a
stealthy spam. The most effective method depends on the target filter type and configuration. An attack
where one appends random words to a short spam (a picospam) was previously seen to be ineffective [5].
The attack failed because random dictionary words are not likely to belong to the set of “good” words.

2 e.g. Messages 4-527, 60-1549 (mailboxnumber-msgnumber); ftp.spamarchive.org/pub/archives/submit/



1 From: Kelsey Stone <bouhooh@entitlement.com>

2 Subject: Erase hidden Spies or Trojan Horses from your computer

3

4 Erase E-Spyware from your computer

5

6 http://boozofoof.spywiper.biz

Fig. 1. Abbreviated source picospam. (Message 24-3379 from SpamArchive.)

However, the basic attack can be refined to choose the random words from a list of common English words.
In theory, this should increase the chances that the random words will appear in the list of desirable ones; thus
increasing the attack’s strength. As a base dataset, 3000 spams and 3000 hams were randomly selected from
the SpamArchive.org and SpamAssassin3 corpora respectively. The attacks were tested against SpamBayes
version 1.0a9 and CRM114 release 20040312. SpamBayes was trained on the selected messages, while CRM114
was trained only when it made classification errors (as recommended by the documentation).

Starting with a picospam that is detectable by the tested filters (Fig. 1), n random words were added to
the message. For each n, this was repeated 1000 times. The random words were chosen with and without re-
placement (allowing repeats v. no repeats). This resulted in two datasets for n = 10, 25, 50, 100, 200, 300, 400;
totaling 7,000 messages per set. The generated spam variations were then processed by each filter and the
message scores with number of false negatives was recorded. The above tests were performed twice: First
using words from a dictionary (as a baseline), and second with a list of common English words [7] (slightly
modified by removing spammy words). In all cases, the results between attacks with and without word
replacement did not significantly vary. Thus, all results reported are for attacks with replacement word
selection.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

4003002001005025100

S
pa

m
 li

ke
lih

oo
d

Words added

Base score

Dictionary
Common

Fig. 2. CRM114 - Spam score on dictionary and common word attacks.

With the dictionary attacks CRM114 performed extremely well with zero false negatives. Using attack
words from a dictionary, SpamBayes’ performance was not so good (Fig. 3(a)). This result is surprising as
the dictionary attack’s level of success contradicts what was found by Graham-Cumming for this type of

3 SpamArchive: http://www.spamarchive.org/, SpamAssassin: http://spamassassin.org/publiccorpus/



Words Spam Ham Unsure

10 999 / 1000 0 / 0 1 / 0
25 937 / 772 0 / 0 63 / 228
50 484 / 16 0 / 0 516 / 984

100 22 / 0 0 / 943 978 / 57
200 0 / 0 269 / 1000 731 / 0
300 0 / 0 829 / 1000 171 / 0
400 0 / 0 858 / 1000 142 / 0

(a) Before training.

Words Spam Ham Unsure

10 1000 / 1000 0 / 0 0 / 0
25 967 / 872 0 / 0 33 / 125
50 601 / 56 0 / 0 399 / 944

100 37 / 0 0 / 735 963 / 265
200 0 / 0 78 / 1000 922 / 0
300 0 / 0 625 / 1000 375 / 0
400 0 / 0 695 / 1000 305 / 0

(b) After training on source picospam.

Fig. 3. SpamBayes - Classifications using dictionary/common word attack. Each cell has two numbers reporting
classification counts: the first refers to the number of dictionary attack messages and the second to the common word
attack.

attack [5]. This difference in results may be due to differences between training corpora or how the tested
filters score messages.

Because CRM114 performed so well against the dictionary word attack, its resistance to the common word
attack is not surprising (zero false negatives). What is interesting is that the dictionary attack score spread
is much more confined than that of the common word attack (Fig. 2). The bulk of the common word attack
instances seem to cause a greater shift toward a stronger spam score (the median score increased linearly).
This may be caused by the presence of sequences deemed ‘bad’ by CRM114 in the common word attacks
causing a large shift in the score. On the other hand, SpamBayes performed worse against the common word
attack with 100 attack words being the major transition point. With as few as 50 common words added,
there is a significant shift toward being unable to identify the messages as spam or ham.

One possible explanation is that SpamBayes had not been trained the basis picospam (despite easily
detecting it without being trained on the message). To test this hypothesis, the original picospam was
added to SpamBayes’ training data. After retesting, SpamBayes performed better against both attacks but
it appears to still be vulnerable to the common word attack (Fig. 3(b)). Figure 4 shows the range of message
scores assigned to the attack variants for the cases before and after training on the original picospam. For
comparison, the picospam without any attack data received a spam probability of 1.0 regardless of training.
The bars indicate the high, low, and median score for each group. When classifying messages, SpamBayes
internally generates two scores, ‘H’ and ‘S’, from which the spam probability score is calculated. Under
regular conditions, a spam message should result in a high ‘S’ and a low ‘H’ score while ham messages do the
opposite. Looking at the filter’s behavior under attack conditions, we saw that the ‘S’ and ‘H’ values shifted
from high/low toward low/high as the attack size increased. Essentially, the attacks cause SpamBayes to do
exactly what it was designed to do: classify messages with lots of “good” features and relatively few “bad”
features as legitimate.

Overall, this attack has shown mixed results. While it affected the message scoring, the shift was not
significant enough to cause errors with CRM114. With SpamBayes, the common word attack quartered
the number of words needed to ‘break’ SpamBayes compared to a dictionary attack. Training on the source
picospam only slowed the transition from ‘unsure’ to ‘ham’ slightly. Though these tests show that it is possible
to influence the filter’s result, a larger scale test is needed in order to check for statistical significance and if
the attack works against other types of filters.

4 Conclusion

Most attacks by spammers do not strongly attack the statistical base of spam filters. Instead, they primarily
work by attacking the filter’s feature generation through tokenization or obfuscation. When developing a
filter, programmers have a number of attack and general issues that must be considered. Spammers face a



 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 25 50 100 200 300 400

S
pa

m
 li

ke
lih

oo
d

Words added

Ham Thresh.

Spam Thresh.

Before
After

(a) Dictionary word attack

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 25 50 100 200 300 400

S
pa

m
 li

ke
lih

oo
d

Words added

Ham Thresh.

Spam Thresh.

Before
After

(b) Common word attack

Fig. 4. SpamBayes - Comparison of performance before and after trained on base picospam. The bars indicate the
high, low, and median scores for the tested attacks.



greater challenge in attempting to defeat filters. Their task is akin to attempting to learn how to coax a
black box into producing a specific output. Whether or not stronger attacks against filters are adopted is
tied to the ubiquity (and effectiveness) of spam filtering systems. Spammers will only adopt new methods
against filters if the gain is perceived as greater than the required effort. Though the common word attack
showed it worked much better than the dictionary attack (requiring one fourth as many attack words), it
also only worked against one of the two tested filters. Thus, in addition to looking at more test data, it
would be useful to compare how a larger pool of filters handle the attack. In order to determine factors
that result in vulnerability to this attack, a test controlling various parameters such as feature selection and
learning algorithms is necessary. The effect of retraining against attack messages needs to be studied as well.
In particular, looking at the effect retraining using common word attack messages has on false positive rates.

Looking beyond advanced statistical attacks, it may be useful to consider traditional security flaws in
filtering software. One example is a buffer overflow vulnerability found in a component of Symantec’s Norton
AntiSpam software4. The format of e-mail as required by various RFCs (i.e. 2822, 2045) may limit the scope
of such attacks. However, as with the Symantec example the exploit code itself need only be referenced
by the message and not directly included. Another area of interest is the application of natural language
processing/generation to spams. Using a limited vocabulary of ‘good’ words, a message may be generated or
transformed into one that appears less suspicious to filters. Regardless of the presence of new attacks, the
struggle between spammers and anti-spammers has no clear end in sight. With any anti-spam measure it is
important to also consider for whom the cost of spam is reduced. Though spam filtering works well, filtering
alone cannot limit all of such costs associated with spam.

References

1. Ion Androutsopoulos, John Koutsias, Konstantinos V. Chandrinos, George Paliouras, and Constantine D. Spy-
ropoulos. An evaluation of naive bayesian anti-spam filtering. In Proceedings of the Workshop on Machine

Learning in the New Information Age, pages 9–17, 2000.
2. Xavier Carreras and Llúıs Màrquez. Boosting trees for anti-spam email filtering. In Proceedings of the 4th

International Conference on Recent Advances in Natural Language Processing, Tzigov Chark, BG, 2001.
3. Harris Drucker, Donghui Wu, and Vladimir N. Vapnik. Support vector machines for spam categorization. IEEE

Transactions on Neural Networks, 10:1048–1054, 1999.
4. Paul Graham. A plan for spam. WWW, August 2002. http://www.paulgraham.com/spam.html.
5. John Graham-Cumming. How to beat an adaptive spam filter. MIT Spam Conference, 2004.
6. Peter Jackson and Isabelle Moulinier. Natural Language Processing for Online Applications: Text Retrieval,

Extraction and Categorization. John Benjamins Publishing Company, 2002.
7. Wortschatz Lexicon. Wortlisten. WWW, August 2001. Lists of common words in German, English, Dutch, and

French. http://wortschatz.uni-leipzig.de/html/wliste.html.
8. Patrick Pantel and Dekang Lin. Spamcop: A spam classification & organization program. In Learning for Text

Categorization: Papers from the 1998 Workshop, pages 95–98, Madison, Wisconsin, 1998. AAAI Technical Report
WS-98-05.

9. Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach to filtering junk
E-mail. In Learning for Text Categorization: Papers from the 1998 Workshop, pages 55–62, Madison, Wisconsin,
1998. AAAI Technical Report WS-98-05.

10. Donghui Wu and Vladimir Vapnik. Support vector machine for text categorization, 1998.

4 See advisory at: http://www.securityfocus.com/archive/1/357954


