
Good Word Attacks on Statistical Spam Filters

Daniel Lowd
Dept. of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350
lowd@cs.washington.edu

Christopher Meek
Microsoft Research

Redmond, WA 98052
meek@microsoft.com

Abstract

Unsolicited commercial email is a significant
problem for users and providers of email ser-
vices. While statistical spam filters have proven
useful, senders of spam are learning to bypass
these filters by systematically modifying their
email messages. In agood word attack, one of
the most common techniques, a spammer mod-
ifies a spam message by inserting or appending
words indicative of legitimate email. In this pa-
per, we describe and evaluate the effectiveness of
active and passive good word attacks against two
types of statistical spam filters: naive Bayes and
maximum entropy filters. We find that in passive
attacks without any filter feedback, an attacker
can get 50% of currently blocked spam past ei-
ther filter by adding 150 words or fewer. In ac-
tive attacks allowing test queries to the target fil-
ter, 30 words will get half of blocked spam past
either filter.

1 Introduction

As spam filters evolve to better classify spam, spammers
adapt their messages to avoid detection. For example, as
statistical spam filters began to learn that words like “Via-
gra” mostly occurr in spam, spammers began to obfuscate
them with spaces and punctuation, such as “vi@gra.” Anal-
ogously, as spam filters learned which words occur mostly
in legitimate email, spammers learned to add those words
to their messages. We refer to these techniques asattacks
and spammers employing these methods asattackers, since
their goal is to defeat the normal operation of a spam filter.

One would prefer spam filters that are robust to such at-
tacks, filters that work well against present and future spam.
Unfortunately, most empirical evaluations of spam filters
ignore this adversarial problem. The problem is a hard
one: since spammers are unpredictable, the true effective-
ness of a filter cannot be known until deployment. Even so,

just as experts analyze the security of networks, operating
systems, and cryptographic methods, we can analyze the
vulnerabilities of specific spam filters by developing and
simulating adversarial attacks.

In this paper, we investigategood word attacks, in which
a spammer adds extra words or phrases to a spam mes-
sage that are typically associated with legitimate email. Of
the many spam filters in existence, we restrict our atten-
tion to the naive Bayes filter, the most popular spam filter,
and the maximum entropy filter, one of the most popular
text-classification filters. For these filters, a spammer sim-
ply needs to identify a list of words considered “strongly
legitimate” by the filter to mount an effective good word
attack.

We develop and test good word attacks for two scenar-
ios. In passive attacks, the attacker constructs a word list
without any feedback from the spam filter. Attacks of this
type amount to educated guesses regarding which words
are “good” and which are “bad.” Inactive attacks, the at-
tacker is allowed to send test messages to the filter to de-
termine whether or not they are labeled as spam. While
active attacks can yield much better word lists, they may
not always be possible since they require the attacker to
have user-level access to the spam filter.

In our experiments, we find that current spam filters are ex-
tremely vulnerable: in the worst case, adding a few dozen
words gets 50% of all currently blocked spam past the filter.
Fortunately, preliminary results show frequent filter retrain-
ing to be effective, especially when the weight of the most
recent training examples is increased by duplication. This
underscores the importance of retraining often, not only to
adapt to the changing characteristics of email content, but
also to mitigate the effectiveness of these attacks.

In Section 2, we describe the statistical filters we used, how
we trained them, and some of their characteristics. In Sec-
tions 3 and 4, we describe passive and active good word
attacks and evaluate them using our filters. We present pre-
liminary work on filter responses in Section 5 and conclude
in Section 6.

2 Statistical Spam Filters

Naive Bayes was first applied to spam filtering by (Sahami
et al., 1998). Since then, it has been used by many spam fil-
ters, including Bogofilter, CRM114, POPFile, SpamAssas-
sin, and SpamBayes. Maximum entropy (maxent) models
(Berger et al., 1996) are more popular in the text classifica-
tion community but have also been applied to spam filtering
(Zhang & Yao, 2003).

2.1 Background

A naive Bayes filter describes the joint probability over a
set of featuresX = X1, X2, . . . , Xn and a classC by mak-
ing the “naive” assumption that each feature is condition-
ally independent given the class:

P (X, C) = P (C)

n
∏

i=1

P (Xi|C)

The class prior,P (C), represents the relative frequency
of each class, while the conditional probabilitiesP (Xi|C)
encode the probability of each feature value given the
class. In the spam domain, the class priorP (spam)
(whereP (legit) = 1 − P (spam)) represents what frac-
tion of incoming email is spam, and the probabilities
P (word|spam) and P (word|legit) give the probability
that each type of email contains each word (or other fea-
ture). Classification follows from the class posterior odds:

P (spam|X)

P (legit|X)
=

P (spam)
∏n

i=1
P (Xi|spam)

P (legit)
∏n

i=1
P (Xi|legit)

If the odds exceed some threshold, then the email is clas-
sified as spam. By taking the logarithm, log odds can be
represented as the following sum:

log
P (spam)

P (legit)
+

n
∑

i=1

log
P (Xi|spam)

P (Xi|legit)

In this way, a naive Bayes binary classifier can be repre-
sented as a set of feature weights and a threshold. Features
that are more common in legitimate email than spam have
negative weights, while those more common in spam have
positive weights.

Unlike naive Bayes, which models the joint distribution
of all features,P (X, C), a maxent filter models the con-
ditional probability of the class given the other features,
P (C|X). Assuming Boolean features and two classes
(spam and legit), the maxent filter is a logistic regression
model and the class odds take the following exponential
form:

P (spam|X)

P (legit|X)
= exp

(

n
∑

i=0

λiXi

)

whereX0 is an artificial feature that has the value one for
every message. As with naive Bayes, the classification is
determined by comparing this sum with a threshold.

Naive Bayes and maxent share the same representation
(weights and a threshold), but are trained to optimize dif-
ferent criteria. The naive Bayes filter is agenerative model,
trained to maximize the likelihood of the training data,
while the maxent filter is adiscriminative model, trained
to maximize the likelihood of the class labels conditioned
on the other features in the training examples. In this way,
maxent filters are similar to support vector machines: both
model the class boundary rather than the entire instance
space.

2.2 Filter Training

Our experimental data comes from the Hotmail feedback
loop, a system in which users of Hotmail volunteer to label
some of the messages they receive as spam or legitimate
email. Because the number of labeled messages per user
is relatively small, we trained global filters using all data
rather personalized spam filters for each user. Our training
set consists of 500,000 labeled messages from before May
1, 2004. This was split into tuning and validation sets of
490,000 and 10,000 examples, respectively. The test cor-
pus consists of 10,000 messages received between May 1
and 8, 2004. Email in the test set was received by a differ-
ent set of users than those of the training set in order to en-
sure generalization across users, not just across time. Our
feature set consists of all tokens that appear in the subject
or body of the email, as well as many non-textual features
based on the message headers. After selecting only those
features that occurred at least 10 times in the training data,
just under 290,000 features remain.

In a spam filter, thefalse positive rate is the fraction of le-
gitimate email incorrectly classified as spam, and thefalse
negative rate is the fraction of spam classified as legitimate.
Adjusting the filter threshold allows us to decrease one er-
ror rate by increasing the other. For example, using a lower
threshold tends to block both more spam and more legiti-
mate email, decreasing the false negative rate but increas-
ing the false positive rate. To simplify the comparison of
different filters, we fix the false positive rates at 10% us-
ing the validation or test set and compare the false negative
rates. A false positive rate of 10% may sound excessive, but
some of this is due to labeling error: users may accidentally
or maliciously mislabel messages, or simply disagree about
what constitutes “spam”. (We briefly experimented with a
false positive rate of 5% as well, but found the resulting
filters more vulnerable to our good word attacks.)

We tuned each algorithm using 490,000 of the training ex-
amples, keeping the remaining 10,000 as a validation set.
Naive Bayes performs best on the validation set with a
Dirichlet prior whereαi = 0.1. Maxent performs best with
a Gaussian prior for theλ’s with zero mean and variance
σ2 set to 0.1. We used these parameters for the remainder
of our experiments.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
10

0

10
1

10
2

10
3

10
4

10
5

Bin weight

C
ou

nt
s

pe
r

bi
n

+
 1

Naive Bayes
Maxent

Figure 1: Histograms of normalized feature weights for
naive Bayes and maxent filters. Bin width is 0.001. Each
bin count was increased by one to permit plotting on a log-
arithmic scale.

With a fixed false positive rate of 10% on the test set, the
maxent filter has 31% fewer false negatives than the naive
Bayes filter. (Raw error rates are not meaningful due to
labeling error in the test set.)

2.3 Weight Analysis

Overall accuracy is not the only metric of interest: we also
wish to determine the susceptibility of each filter to a good
word attack. In general, a filter is more susceptible if it has
features with very negative weights, since these disguise
spam more efficiently. In order to make filter weights
comparable, we scaled each filter’s weights so that given a
false positive rate of 10%, the median score of a true pos-
itive is 1 greater than the threshold. This provides a very
reasonable interpretation of the weights: a weight of -0.01,
for example, provides 1% of the weight necessary to get
the median blocked spam past the filter. Put another way,
a list of words whose weights sum to -1 is sufficient to get
half of the currently blocked spam past the filter.

In spite of its lower error rate, the maxent filter also
has large negative weights for many features, suggesting
greater susceptibility to good word attacks. Figure 1 shows
histograms of naive Bayes and maxent feature weights. The
heavier tails of the maxent distribution represent features
with relatively large positive or negative weights. The sharp
spikes for naive Bayes correspond to features that appear a
few times but only in spam or only in legitimate email. The
locations of these spikes are determined by the prior weight
tuning parameter.

Table 1 summarizes key differences between the two filters:
the maxent filter has higher initial accuracy and smaller av-
erage weights, but the naive Bayes filter has fewer very pos-
itive or very negative weights. The relative importance of

Table 1: Filter Weight Summary Statistics

Naive Bayes Maxent
Max norm. weight 0.1302 0.5398
Min norm. weight -0.1329 -0.6346

Avg pos. norm. weight 0.0449 0.0199
Avg neg. norm. weight -0.0243 -0.0229

these different factors depends on how easy it is for an at-
tacker to find the highest-weight features in each filter, a
question we analyze in the next two sections.

3 Passive Attacks

In passive good word attacks, attackers have no direct ac-
cess to the spam filter. At best, they can make educated
guesses as to which words are helpful. In this section, we
describe three different passive word selection heuristics
and evaluate their effectiveness.

The first and simplest approach is to choose random words
from some larger set of words in the hope that such words
are more likely to be associated with legitimate email than
with spam. The set of words could come from a dictionary
or be chosen on the basis of the spammer’s domain knowl-
edge. We chose to use dictionary words because these are
available electronically. We refer to this type of attack asa
dictionary attack.

A more sophisticated approach would be to look at what
words appear most often in legitimate email and use those.
We assume that legitimate email is hard to come by for the
average attacker and so use word frequencies from four dif-
ferent English corpora: Reuters news articles, written and
spoken English, and USENET messages from 1992. We
call this afrequent word attack. Wittel and Wu explore a
similar attack using a single list of common English words
with spammy words removed (2004).

Finally, since spam is easy to come by, we can easily con-
sider word frequencies in spam. Words that appear fre-
quently in legitimate email and never in spam are more
likely to be effective than words that are common to both.
We refer to this heuristic as afrequency ratio attack.

3.1 Public Corpora

Our spam training data consists of all spam on spa-
marchive.org from the month of April, 20041. Since our
filters are trained using data up to May 1, we used spam
from the same time period. To convert a set of emails into
word frequencies, we selected the message bodies, normal-
ized case, and tokenized them, splitting on non-letters. We

1An archive of current spam is available from
ftp://spamarchive.org/pub/archives.

further restricted the set of words to lower-case dictionary
words.

The Reuters articles are from the Reuters-21578, Dis-
tribution 1.0 text categorization test collection, a set of
21,578 documents (but only 19,043 complete articles) from
Reuters newswire in 19872. We tokenized all article bod-
ies (splitting on non-letters), normalized case, and gener-
ated frequency counts for all dictionary words. Uppercase
words, such as proper nouns, are excluded from the list.

The written and spoken English corpora are based on the
British National Corpus3. We used the word frequencies
given but with a certain amount of regrouping. First, we re-
moved number words, since words such as “one” or “five”
are more likely to be written as “1” or “5” in an email.
We also summed frequencies for words that would be in-
distinguishable when split on punctuation, (e.g., “can” and
“can’t”), and removed part-of-speech distinctions that re-
sulted in repeated words (e.g., “no” appeared separately as
a determiner and as an interjection).

The word frequencies for the 1,000 most common words on
USENET in 1992 are publicly available as well4. As with
written and spoken English, we split on punctuation and
regrouped, ending up with 865 words after the regrouping.
Most regroupings were due to distinctions of capitalization
– “the” and “The” are treated as two distinct words in this
corpus, but we combine their separate frequencies into one.

3.2 Methodology

To determine the effectiveness of a random dictionary
word, we averaged the weights of all dictionary words in
each filter. Approximately 23,000 of the 290,000 filter fea-
tures are in our chosen dictionary, the first English ispell
dictionary, english.05.

For the other passive attacks, we generated explicit word
lists and computed the average weight per word according
to each filter. Since a set of words whose filter weights
sum to -1.0 can disguise the median spam, we use this to
compute the expected number of words required to reach
this total weight. This number estimates how many words
a spammer must add to a typical spam when using a partic-
ular attack against a particular type of filter.

2The Reuters-21578 text categorization test collec-
tion, Distribution 1.0, is freely available for research use
at http://www.daviddlewis.com/resources/testcollections/-
reuters21578.

3English word frequencies were obtained from the
companion website forWord Frequencies in Written and
Spoken English: based on the British National Corpus,
http://www.comp.lancs.ac.uk/computing/research/ucrel/bncfreq/.

41992 USENET word frequencies are available from
http://www.dcs.shef.ac.uk/research/ilash/Moby/.

5English dictionaries are distributed with ispell, available from
http://fmg-www.cs.ucla.edu/fmg-members/geoff/ispell.html

Table 2: Passive Attack Results

Experiment Corpus NB Words ME Words

Dictionary N/A -132 -555
Freq. Word Reuters 1,350 1,420

Written 1,920 2,110
Spoken 1,470 1,040

USENET 898 845
Freq. Ratio Reuters 112 735

Written 133 305
Spoken 159 256

USENET 257 149

For the frequent word attack, we selected the 1,000 most
frequent words according to each of the first three English
corpora. For 1992 USENET, we used all 865 words.

For the frequency ratio attack, we ranked each word by its
frequency in each English corpora relative to its frequency
in the spam corpus. Words that never appear in the spam
corpus are excluded. (Few words are excluded for this rea-
son, since the spam corpus features over 27,000 distinct
dictionary words.) Since the 1992 USENET corpus started
out with only 865 words, we selected the top 250 words;
for the other corpora, we selected the top 1,000 words.

Note that the frequency ratio method is very similar to how
naive Bayes computes weights. In fact, with the exact train-
ing data and configuration of the naive Bayes filter, one
could discover its exact weights. Lacking those details, an
attacker can still approximate the filters using these pub-
licly available corpora.

3.3 Results

Our results are summarized in Table 2. For each exper-
iment and each corpus, we list the expected number of
words required to get the median spam past each filter, ex-
trapolated from the median word weight. In some cases,
this is more words than in the original word list.

For dictionary attack, the expected number of words is neg-
ative, indicating that random dictionary words makes an
email look more like spam, not less. As Graham-Cumming
(2004) points out, spam is now the majority of email and
many spams have random words in them, so a random word
is actually more likely to be spammy than good.

Frequent words do much better than random words, but
the attack’s utility is limited: for most corpora the num-
ber of words required exceeds 1,000, a significant increase
in message length.

The highest frequency-ratio words do quite well. With the
right corpus, fewer than 150 words are needed to get the
median spam past either filter. Starting with a less blatant
spam, even fewer words may be necessary.

Figure 2: FINDWITNESS(Mspam, Mlegit)

Mcurr ←Mlegit

repeat
Mprev ←Mcurr

if some wordw is in Mcurr but notMspam then
removew from Mcurr

else if somew is in Mspam but notMcurr then
addw to Mcurr

end if
until Mcurr classified as spam
return (Mcurr, Mprev)

The frequency ratio attack works very well against both
naive Bayes and maxent, but the best corpus for naive
Bayes is the worst for maxent, and vice versa. Overall,
naive Bayes is somewhat easier to defeat, requiring fewer
than 300 words from any corpus.

4 Active Attacks

The basic theory of active attacks is that through active ex-
perimentation, an attacker can discover a word list that is
guaranteed to be effective against a particular filter. One
simple experiment is to send thousands of email messages,
each with a few random words added, as proposed by
Graham-Cumming (2004). If the attacker can detect which
ones are marked as spam, then the attacker knows which
sets of random words are effective and can use them again
in the future. However, this method depends heavily on
finding random groups of words that are sufficient for get-
ting the message through. If the message is always blocked,
then the attacker learns very little. In this section, we
present two methods that avoid this problem and provide
more information about which words are helpful.

See (Lowd & Meek, 2005) for a provably effective algo-
rithm that tackles a related adversarial problem: getting a
single message past a spam filter with minimal modifica-
tion.

4.1 First-N Words

We first consider a method for finding fixed-size lists of
words with negative weights (i.e., good words). An algo-
rithm to find a list of good words using minimal queries is
listed in Figure 3.

Our algorithm begins by calling the subroutine FINDWIT-
NESS listed in Figure 2. Starting from two messages, one
classified as legitimate and one classified as spam, it finds
another legitimate/spam message pair that differ by only
one word. This is accomplished by removing words from
the legitimate message, then adding ones from the spam

Figure 3: FIRSTNWORDS(Mspam, Mlegit)

L← ∅
(Mǫ+, Mǫ−) = FINDWITNESS(Mspam, Mlegit)
for each wordw ∈W do

if Mǫ+ with w classified as legitimatethen
add wordw to L

end if
if L contains at leastn wordsthen

exit loop
end if

end for
return L

message, until the message is classified as spam. Both mes-
sages in the new pair are likely to be near the boundary
between spam and legitimate messages because they only
differ by a single word. The FIRSTNWORDS algorithm
tests each dictionary word by adding it to the barely-spam
message. If the message is classified as legitimate with the
addition of the word, then it must be a good word. This
process halts aftern good words have been found.

However, the result of the FindWitness subroutine in Fig-
ure 2 could be a pair of messages that differs by the word
with the largest weight. It is entirely possible that no, or
very few, other word changes will suffice to make the spam
message legitimate again. In practice, this is rare, espe-
cially when the set of features is large. If this should hap-
pen, one can simply attempt to rerun the algorithm starting
from a different message pair or using a larger word list.

4.2 Best-N Words

The First-N Words algorithm can be refined to identify a list
of good words with the largest weights, enabling more ef-
fective good word attacks. Our modified algorithm is listed
in Figure 4.

As before, our algorithm uses the FINDWITNESS subrou-
tine to identify a barely-spam/barely-legitimate message
pair. As in the First-N attack, it builds a list of negative
words by adding each dictionary word to the barely-spam
message and sending it through the filter. However, it also
builds a list of positive words in an analogous procedure
starting from the barely-legitimate message.

Each positive word partitions the negative words into two
sets: words of greater magnitude than the positive word,
and the words of lesser magnitude. Starting from the
barely-spam message, the algorithm adds a positive word
and then each negative word in turn. If a resulting message
is classified as spam, then its negative word’s weight has
greater magnitude than the positive word’s weight.

Figure 4: BESTNWORDS(Mspam, Mlegit)

(Mǫ+, Mǫ−) = FINDWITNESS(Mspam, Mlegit)
S ← {w ∈ W |Mǫ− with w is classified as spam}
L← {w ∈W |Mǫ+ with w is classified legitimate}
Lbest ← ∅
for each spammy wordw+ ∈ S do

Lsmall ←
{w

−
∈ L|Mǫ+ with w+, w

−
classified as spam}

Llarge ←
{w

−
∈ L|Mǫ+ with w+, w

−
classified legitimate}

if |Lbest|+ |Llarge| < n then
remove all words inLlarge from L

add all words inLlarge to Lbest

else
remove all words inLsmall from L

end if
if L remains unchanged for 10 iterationsthen

augmentLbest with n− |Lbest| words fromL

exit loop
end if

end for
return Lbest

Since the goal is to find the bestn words, the algorithm
then reduces the set of negative words under consideration.
If the set of greater magnitude words is larger thann, then it
never needs to consider any of the lesser magnitude words.
On the other hand, if the set of greater magnitude words is
smaller thann, then this entire set is a subset of the best
n words, so the algorithm focuses future iterations on the
less-negative set. If all negative words have greater magni-
tude than the current positive word, or all have lesser mag-
nitude, then the algorithm learns nothing. The algorithm
halts when it has found then best words, or when 10 pos-
itive words in a row yield no progress. In the latter case,
its list of n words is a combination of the best words found
and random negative words still under consideration.

As with the First-N attack, this algorithm can fail. It is
possible for the spammy words to all be of greater magni-
tude than the legitimate words, in which case no ordering is
possible. Even so, this algorithm will never produce a less
effective word list than the First-N attack.

The number of queries can probably be reduced further by
incorporating passive attack heuristics. For example, the
Best-N attack could be run with only the words with best
and worst frequency ratios. While this approach might miss
a few of the best words, it would also cut down on queries
by skipping most of the low-weight words.

The relative cost of making queries versus adding more
words to an email will depend on the spammer’s specific

economic model. If the word list obtained is used to get
10 million emails past a spam filter, then 100,000 query
emails is a reasonable cost. On the other hand, if the par-
ticular spam filter being attacked only guards 1,000 email
accounts, then even 10,000 queries might be too expensive.
While the procedures for sending (and checking) query
emails may be more complicated than for spam, both the
First-N attack and the Best-N attack can be parallelized to
a large extent by testing many candidate words at once.

4.3 Results

We applied both the First-N and Best-N attacks to each fil-
ter 100 times. Our dictionary consists of the 23,000 words
from the first English ispell dictionary, english.0, that have
non-zero weight in our filters. We ran each trial until we
found a set number of words which we varied from 100 to
5,000. Average word weights and query counts are shown
in Figure 5.

In the active attacks, we see that Best-N attacks can be ex-
tremely effective against maxent. In fact, even First-N at-
tacks against maxent are more effective than Best-N attacks
against naive Bayes. This suggests that the larger feature
weights found in maxent filters make them more suscepti-
ble to active attacks.

To reduce maxent feature weight magnitudes, we trained a
new filter using a smaller variance for the Gaussian prior,
σ2 = 0.01 instead of 0.1. Against the new filter, each good
word attack required 60%-100% more words – a substan-
tial increase in adversary difficulty, but still more vulner-
able to attack than the naive Bayes filter. More queries
were required as well, but never more than three times as
many. More robust filters could perhaps be trained using
even smaller variances, but this would reduce accuracy in
the absence of an attack.

While the Best-N attacks are more effective, they come at
a price: the Best-N attacks require over 60,000 queries on
average, while the First-N attacks require under 5,000. Of-
ten, the First-N attacks took even fewer queries: over 60%
of the time, the attack found 100 features in under 1,000
queries.

Table 3 compares the most effective passive and active at-
tacks. The table presents the number of words required to
get half of blocked spam labeled as legitimate for differ-
ent good word attacks. The number of queries required to
identify those good words is presented in parentheses. The
better attacks require more queries, but drastically reduce
the number of words required.

5 Spam Filter Responses

Under a siege of good word attacks, what hope does a spam
filter have? If the addition of a few dozen words increases

100 200 500 1000 2000 5000
0

0.05

0.1

0.15

N
eg

at
iv

e
av

er
ag

e
w

ei
gh

t

Features found

NB first
NB best
ME first
ME best

100 200 500 1000 2000 5000
0

2

4

6

8

10

12
x 10

4

A
ve

ra
ge

 n
um

be
r

of
 q

ue
rie

s

Features found

NB first
NB best
ME first
ME best

Figure 5: Average negative feature weight and average number of queries required for each type of active attack against
each filter.

Table 3: Comparison of Good Word Attacks

Naive Bayes Maxent
Attack type words (queries) words (queries)

Passive 112 (0) 149 (0)
Active (first) 59 (3,083) 20 (4,262)
Active (best) 29 (61,982) 9 (68,987)

the false negative rate to over 50%, is filtering even worth-
while? To answer these questions, we conducted a prelim-
inary study of possible defenses against these attacks.

If each good word attack is merely a list of words added
to a spam, then it should be possible to detect an attack by
looking for such lists of unrelated words. Unfortunately, an
attacker can easily disguise a good word attack by turning
the word list into plausible text. A simple way to do this is
to search the internet for paragraphs that are rich in these
words. A more sophisticated method could use a language
model for automatically generating sentences from words.

Alternatively, one might hope to foil active attacks by
providing a noisy filter that gives inconsistent responses.
While this would defeat the algorithms we present, such an
approach does not seem effective in general. For instance,
if the messages are misclassified with a fixed probability,
then an adversary can easily compensate by issuing more
test messages to average out the misclassified examples. A
more interesting approach to adding misclassification noise
is to increase the misclassification rate for messages near
the classification boundary. However, such an approach
potentially provides additional information to the attacker
about the proximity to the boundary and again might only
force the attacker to use more test messages in identifying
good words. Furthermore, while this approach might make
a filter more difficult to attack, it directly increases the error
rate through intentional misclassification.

Dalvi et al. (2004) present a proactive approach that antic-
ipates attacks and adjusts the filter to compensate for them.
However, they make the unrealistic assumptions that the
attacker has complete knowledge, an optimal strategy, and
no knowledge of the filter adjustments. It remains to be
seen if this approach works in more realistic scenarios with
imperfect yet tenacious adversaries.

The simplest approach, and the only one we have found
to be effective, is frequent retraining. With this method,
good words that are overused by spammers soon cease to
be good. The actual effectiveness of retraining depends on
the relative responsiveness of the attacker and the filter. We
assume (and hope!) that the filter can be retrained faster
than spammers can find new word lists.

5.1 Preliminary Retraining Experiments

We conducted preliminary experiments to test how well
retrained spam filters fare against active attacks, the most
dangerous of the good word attacks. The precise effective-
ness of retraining will inevitably depend on many factors,
such as the frequency of the good word attacks and the rate
at which you acquire labeled training data. Our study does
not explore all dimensions of this problem; instead, it uses
one plausible scenario to demonstrate the potential impact
of retraining. A more thorough investigation is left for fu-
ture work.

To augment a spam message with a good word attack, we
added random words one at a time from a list of 1,000.
We used 1,000 words because that allows for some vari-
ance in the attacks, presenting a greater challenge for the
classifier. Once a modified spam message got past the fil-
ter, we stopped adding words. If a spam was still blocked
after adding 100 words, we gave up and used the original
unmodified message. By adding only as many words as
necessary, we gave the spam filter less useful information.

Table 4: Percent Decrease in Blocked Spam
First-N First-N Best-N Best-N

Orig. Attack Orig. Attack
Orig. NB 0.00% 62.52% 0.00% 87.22%

ME 0.00% 99.76% 0.00% 99.94%
Retrain NB -0.02% -0.02% -1.38% -1.38%

ME -0.60% -0.30% -0.90% 0.15%

We randomly split the test set into two sets of 5,000 mes-
sages each, one for retraining and one for retesting. Spam
messages in the retraining set were modified using both
First-N and Best-N word lists, against both naive Bayes
and maxent spam filters. (Legitimate messages from the re-
training set remained unmodified.) The resulting modified
versions of the retraining set were used as additional data
for retraining their respective filters. We gave the 5,000
modified messages higher weight relative to the 500,000
original training examples by duplicating them before re-
training. We tried numbers from one to 100 and settled
on the number of duplicates that maximized performance
on both modified and unmodified test data, giving equal
weight to each. We then measured the accuracy of the orig-
inal and retrained filters on the retesting set, with and with-
out good word attacks.

5.2 Retraining Results

Table 4 lists the relative decrease in blocked spam for each
type of filter under each scenario. For example, a value
of zero means that the same amount of spam is blocked
as in the baseline case, with no attack and no retraining.
Negative values represent an increase in accuracy. For ex-
ample, a value of -10% means that 10% more spam are
blocked than in the baseline case. The first two rows show
the degradation of the original spam filters under each at-
tack. The second two rows show how well the retrained
filters perform, both with and without each good word at-
tack. Both the “First-N Orig.” and “Best-N Orig.” columns
show performance on the unmodified retesting set; the only
difference is in the retrained filters, which were trained us-
ing First-N or Best-N attack data, respectively.

After retraining, both naive Bayes and maxent demonstrate
good accuracy against both attacks, often exceeding their
original accuracies. While maxent was originally more sus-
ceptible to the attacks, it does just as well after retraining.
This suggests that maxent depends more on frequent re-
training than naive Bayes.

6 Conclusion

By adding a relatively small number of easily found words,
an attacker can get 50% of currently blocked spam past a
typical spam filter. While current good word attacks may

be less sophisticated, any weakness of current spam filters
will eventually be exploited. Active attacks are the most
effective, but good words can still be found without issu-
ing a single query. This means that no spam filter is safe.
The only remedy we know of is frequent retraining: if we
cannot prevent attacks, we can still seek to limit their im-
pact. Future work includes characterizing other spam at-
tacks (e.g., word obfuscation); exploring the relative vul-
nerability of other types of spam filters; finding better de-
fenses against good word attacks; assessing the effective-
ness of retraining in more varied scenarios; and further an-
alyzing the effect of priors on the feature weight distribu-
tions of naive Bayes and maxent filters.

Acknowledgements

The authors thank Mary Lowd and Janet Schmidt for de-
tailed comments on an earlier draft, and Geoff Hulten for
helpful discussions. This research was partially done while
the first author visited Microsoft Research, and was par-
tially funded by an NSF Graduate Research Fellowship
awarded to the first author.

References

Berger, A., Pietra, S. D., & Pietra, V. D. (1996). A max-
imum entropy approach to natural language processing.
Computational Linguistics, 22.

Dalvi, N., Domingos, P., Mausam, Sanghai, S., & Verma,
D. (2004). Adversarial classification.Proceedings of
the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2004)
(pp. 99–108). Seattle, WA: ACM Press.

Graham-Cumming, J. (2004). How to beat an adaptive
spam filter.MIT Spam Conference. Cambridge, MA.

Lowd, D., & Meek, C. (2005). Adversarial learning.Pro-
ceedings of the Eleventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD 2005) (to appear). Chicago, IL: ACM Press.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E.
(1998). A Bayesian approach to filtering junk E-mail.
Learning for Text Categorization: Papers from the 1998
Workshop. Madison, Wisconsin: AAAI Technical Re-
port WS-98-05.

Wittel, G. L., & Wu, S. F. (2004). On attacking statis-
tical spam filters.Proceedings of the First Conference
on Email and Anti-Spam (CEAS 2004). Mountain View,
CA.

Zhang, L., & Yao, T. (2003). Filtering junk mail with
a maximum entropy model.Proceedings of the 20th
International Conference on Computer Processing of
Oriental Languages (ICCPOL 2003) (pp. 446–453).
ShenYang, China.

