
Reducing E-Discovery Cost by Filtering Included Emails

Tsuen-Wan “Johnny” Ngan
Core Research Group

Symantec Research Labs
900 Corporate Pointe

Culver City, CA 90230

Abstract

As businesses become more reliance on informa-
tion technology, electronic information is often
produced as vital evidence during civil litigation.
The process of discovering electronic informa-
tion as evidence is getting increasingly expensive
as the volume of data explodes. This surging de-
mand calls for a solution to reduce the cost asso-
ciated with the discovery process. In this paper,
we propose filtering included emails as a means
to reduce review data volume, and describe effi-
cient algorithms to identify those emails. Exper-
iments show that this can reduce the number of
emails to be reviewed by 20% in corporate email
corpse.

1 Introduction

Email has become an indispensable part of communication
for enterprises of any size, both for within the enterprise
and with outside parties. It has long been considered as
official means of communication, replacing postal mails
and facsimiles as the most common form. Nevertheless,
its speed and convenience come with a hefty price of man-
agement and storage overhead.

The problem is highlighted with the introduction of leg-
islation such as the Health Insurance Portability and Ac-
countability Act (HIPAA) in 1996 and the Sarbanes-Oxley
Act (SOx) in 2002, both of which have significantly in-
creased the importance of managing and storing all infor-
mation within enterprise. Email, in particular, has become
one of the most important content types that needs to be
retained. This is further complicated by the fact that reten-
tion rules could vary based on users, locations, file types,
and whatnot. In fact, for larger enterprises, the number of
items to be retained could easily be multi-billions.

The management of this sheer volume of data becomes a
formidable task for large enterprises. Off-the-shelf stor-

age products and solutions often perform some basic pro-
cessing on the data. For instance, many have the feature
of whole-item de-duplication (or single-instance storage),
where the same item retrieved from different locations and
received by different users is stored only once. Other com-
mon processing is usually based on email headers, typically
allowing users to perform boolean queries to select and fil-
ter emails. However, little is done on email content, other
than perhaps building an inverted index to expedite search-
ing. Analysis of content data is therefore done manually
and inefficiently, particularly under the recent surging de-
mand for e-discovery.

E-discovery, or electronic discovery, refers to discovery of
evidence from electronic data in civil litigation. Unlike tra-
ditional discovery from paper information, the uniqueness
of electronic information stems from its intangible form,
volume, transience, and persistence. Furthermore, elec-
tronic information is usually accompanied by metadata,
which is rarely present in paper information.

E-discovery is often time-consuming and expensive. Lit-
igations sometimes require humongous amount of emails
to be reviewed to extract evidence. This process is usu-
ally done manually by attorneys that charge by the hours
or data size. A survey conducted in 2006 [Fulbright, 2006]
on senior corporate counsels showed that companies are
facing growing numbers of lawsuits, and fewer are es-
caping them, even as arbitration numbers also grow. The
cost of this active environment for dispute is very high:
Companies with $1 billion or more in annual revenues
spent an average of $31.5 million on all their legal mat-
ters, and 40% of the study samples had at least one law-
suit filed against them in which $20 million or more was
at issue. While there are several products in the market
aiming to assist attorneys and their customers to facilitate
and streamline this process [Symantec, 2008, EMC, 2008,
ZANTAZ, 2008], little is done on analyzing email con-
tent to reduce the amount of emails to be reviewed.
Machine-learning techniques like classification and clus-
tering [Huang et al., 2004, Surendran et al., 2005] are often
unsuitable, as enterprises cannot risk missing crucial evi-

dence from false negatives of these techniques.

This paper positions itself in a practical perspective to-
wards alleviating the burden on attorneys to manually re-
viewing every single email. The key insight is that during
e-discovery, any email that is completely included by an-
other email in the repository can be safely ignored, without
any risk of losing evidence. To that end, we propose an
efficient paragraph-based algorithm for statically and dy-
namically finding all email inclusions in an repository. We
also experimented the algorithms against the Enron corpus
and an mailing list trace.

The rest of this paper is organized as follows. Section 2
describes the process of e-discovery and explains the ad-
vantages for filtering included emails. Section 3 depicts
our paragraph-based comparison algorithm to quickly find
inclusions. The algorithm is tested on two data sources in
Section 4. Finally, Section 5 covers related work and Sec-
tion 6 concludes.

2 The E-discovery Process

Due to the potential of litigations, companies are required
to preserve electronic information. In fact, e-discovery is
the subject of amendments to the Federal Rules of Civil
Procedure [Supreme Court, 2006], effective since Decem-
ber 2006. The amendment concerns itself with a company’s
duty to preserve and produce electronically stored infor-
mation in the face of litigation or pending litigation. Par-
ties involved in civil court proceedings must provide a list
of all electronically stored information that might be rel-
evant to the case. Involved parties must also discuss the
forms in which this information should be produced, and
the party who requests the information may specify the
form or forms in which electronically stored information
is to be produced.

Since e-discovery is relatively new, there is no well-
established standards and procedures for enterprises to fol-
low. E-discovery typically involves a number of phases,
and various industry bodies have proposed standards as to
how each phase should be satisfied. One of those industry
bodies, called the Electronic Discovery Reference Model
project (EDRM) [EDRM Group, 2008], is backed by many
technology and service vendors in the discovery market.
This model, laying down e-discovery standards and guide-
lines, contains the following steps:

1. Identification. The scope, breadth, and depth of elec-
tronically stored information that might be pursued
during discovery is first assessed and determined.

2. Preservation. The stored information is protected
against destruction and alternations.

3. Collection. The stored information is gathered from

various sources, including backup tapes, drivers, and
portable storage devices.

4. Processing. The overall set of data is reduced by set-
ting aside duplications and data that are irrelevant due
to their type, origin, or date.

5. Review. The collected information is evaluated for
relevance.

6. Analysis. The discovery materials are analyzed to de-
termine relevant summary information.

7. Production. The information is delivered to various
recipients, for use of various systems, and on various
media.

8. Presentation. The information is finally presented at
depositions, hearings, and trials.

As the volume of data decreases down the steps, the rele-
vance remains in the volume rises.

Out of all steps, step 5 (review) and 6 (analysis) are usually
the most expensive ones, since a large amount of data still
needs to be manually processed by attorneys. Moreover,
each review and analysis may be specific to the current lit-
igation. This means that separate review and analysis steps
are needed for each new litigation. Hence, any optimization
should be done on minimizing the volume of data involved
in these steps.

Consider an email discussion thread with possibly many
emails. When an email in the thread is replied or for-
warded, it is common practice for many to quote the con-
tent of the original email fully in verbatim. From a review-
ing perspective, it suffices to review only the last email in
the thread, since it already contains the text of all emails
in the thread; all other emails in the thread can be filtered
without any loss of evidence.

Of course, a response email may or may not quote its
parent email in entirety, and an email thread may contain
many branches that resemble a tree rather than a line. It is
therefore necessary to compare email content to determine
which emails can be safely filtered.

There are two advantages of this inclusion comparisons.
First and foremost, it reduces the number of emails to be
manually reviewed. Second, it helps to group emails in the
same discussion thread together, even when other heuris-
tics [Yeh & Harnly, 2006] fail. A reviewer can then read
these related emails together, allowing the review process
to be more efficient.

3 Finding Email Inclusions

This section describes our proposed algorithms for finding
inclusions.

2

3.1 Defining Inclusions

Conceptually, an email is “included” when its content is
completely present in other emails. However, in practice,
it is tricky to define inclusion exactly for e-discovery. In
one extreme, inclusion may require a verbatim copy of an
entire email; in the other extreme, an email can be con-
sidered included when all its sentences are eventually re-
viewed. While cases may be made for either case, these
definitions are too extreme and are not particularly useful
for e-discovery.

Recall that the purpose of finding inclusion is to allow re-
viewers to skip certain emails, with the confidence that in
doing so they would not miss out any information. To that
end, classification must be done conservatively. A sentence
or paragraph that is present in multiple emails may carry
different meanings based on its location. For instance, it
would be incorrect to conclude that a reply of “Yes” can
be ignored if there are some unrelated emails containing a
“Yes.” Thus, we require an email to be completely con-
tained by another email before it can be filtered.

Another decision is on the smallest unit for comparisons.
Since we are considering the meaning of emails, the min-
imal basic unit with a complete meaning should be sen-
tences. However, notice that paragraphs are usually un-
modified after quotation. By expanding the basic unit to
paragraphs, it can greatly reduce the number of items for
comparisons without affecting much on accuracy.

Of course, this paragraph-based definition may result in
false negatives (failure to find an inclusion). For example,
if a paragraph is broken into two in a reply, it would end up
with two new paragraphs instead of the original one. How-
ever, for the purpose of reducing volume of review data,
these false negatives would only prevent the filtering of
some emails, but would not remove potential evidence. We
consider this as an acceptable tradeoff for faster searching.

3.2 Paragraph-Based Inclusion Check

We now present a high-level design of our paragraph-based
inclusion check. Each email is represented by a set of di-
gests, where each digest is computed from a paragraph in
the email.

Fundamentally, inclusion check can be done using two fun-
damental building blocks:

• Subset test: Given email E, determine if E is con-
tained by any member of a set of emails.

• Superset test: Given email E, determine if E contains
any members of a set of emails.

With a large set of emails, the superset test is much more
expensive than the subset test. Assume an inverted index is

-----Original Message-----

From: Allen, Phillip K.

Sent: Friday, December 07, 2001 5:14 AM

To: Dunton, Heather

Subject: RE: West Position

> At 04:18 PM 10/1/2001 -0500, you wrote:

Figure 1: Two examples of software-generated quotation
text in email content.

built that maps paragraphs to emails that contain them. For
the subset test, it suffices to use any paragraph in E to pick
out candidate emails. However, for the superset test, it is
necessary to consider all paragraphs in E.

Because of the difference in performance, the two tests en-
able different use cases. For an existing email archiving
system, all emails are present at the very beginning. To
find inclusions, it suffices to iterate over all emails and per-
form the subset test on each one. However, for a live email
archiving system, when a new email arrives, it is necessary
to check inclusion in both directions.1 Therefore, a tool that
is tightly integrated to a live email archiving system would
need to run both tests on each new email. This paper solves
the latter, more computational-intensive problem.

3.3 Implementation Details

The rest of this section describes details of our proposed
algorithm. The algorithm consists of preprocessing indi-
vidual emails and then finding inclusions between them.

3.3.1 Preprocessing Individual Emails

The preprocessing converts each email into a set of digests.
It involves three steps: (1) Removing extraneous text; (2)
dividing email into paragraphs; and (3) hashing each para-
graph. Since some of these steps depend on the language
and its usage practice, for simplicity we assume all emails
are in English.

The first step is to remove extraneous text. Extraneous text
is defined as parts in an email that are not inputed by hu-
man users. This includes email headers and quotation text
in content that are automatically generated by email client
software. Examples of the latter are shown in Figure 1.

The remaining email content is then divided into para-
graphs by locating paragraph separators. For text emails,
a paragraph separator could be a line with no alphanu-
meric characters or a paragraph separator character defined
in Unicode. For html emails, it could be a paragraph tag

1Note that while new emails are unlikely to be included by
existing emails in normal circumstances, emails may not arrive
in chronological order. For example, they may be collected from
different sources at different time.

3

(<p/>) or consecutive line break tags (
).

The last step is to compute a digest for each para-
graph. Since we are only interested in text and not its
format, only alphanumeric characters are extracted from
each paragraph and hashed. This ensures that automatic
alternations like insertion of quoting symbols (e.g., >)
and line breaks would not affect the generated digests.
A universal hash function [Carter & Wegman, 1979] like
UMAC [Black et al., 1999] is preferred due to the use of
Bloom filters below, but any commonly used ones like
MD5 or SHA-1 would be sufficient.

3.3.2 Finding Inclusions

Since each email is already converted to a set of digests, the
problem is reduced to running both subset test and superset
test efficiently.

If we perform the superset test by iterating over all para-
graphs and check all emails containing them, the process
would be very slow, as some paragraphs appear in a large
number of emails (see Section 4.1.4), and every time when
a new email containing a popular paragraph arrives, it be-
comes necessary to iterate over all emails that contain that
popular paragraph. To expedite the process, we need to
handle popular paragraphs separately.

Popular Paragraphs

The algorithm divides paragraphs into two sets: popular
and unpopular, based on a threshold of occurrences. With
this partitioning of paragraphs, we can categorize emails
into two sets: (1) Emails with only popular paragraphs
(called P); and (2) Emails with at least one unpopular para-
graph (called Q). Two separated inverted indices are built,
mapping paragraphs to emails in P and Q.

Note that for a paragraph to be popular, it must appear in a
large number of emails, many of which may be unrelated to
each other. Examples of these include signatures and greet-
ings gratitude. Since emails usually contain other pieces of
useful information, very few emails should fall into P .

To search for inclusion candidates, the algorithm iterates
over all paragraphs in the email, but handles popular and
unpopular paragraphs differently. For each unpopular para-
graph, since they are only present inQ, all emails that con-
tain it in Q are added to the candidate set. However, for
each popular paragraph, it suffices to add only emails in P .
This is because any email in Q would also contain unpop-
ular paragraph, so if it is an inclusion, it would be selected
when we consider that unpopular paragraph.

The algorithm avoids the worst case, namely, iterate over
all emails that contain a popular paragraph whenever it pro-
cesses an email with that popular paragraph.

Once the set of candidate emails are selected, it is still nec-

essary to determine if there are inclusions. The set of can-
didate emails can still be very large, since any email that
share any common paragraph is in the set. Thus, we use
Bloom filters to filter out most false positives.

Bloom Filter

Bloom filter [Bloom, 1970] is a space-efficient probabilis-
tic data structure used to test set membership. It is basically
a bit vector initialized to all 0. Each element added to the
filter will set one or more bits to 1. A set membership test is
done by checking if all the bits corresponding to the given
element are set to 1. Since there are more elements than the
number of bits available, Bloom filters may have false pos-
itives but not false negatives. We extend this data structure
to test for subset relation between emails.

Note that while most emails have only a few paragraphs,
some emails contain a large number of paragraphs (see Sec-
tion 4.1.2). To avoid many emails from having their Bloom
filters entirely set to 1 and rendering the Bloom filters inef-
fective, we correspond each paragraph to only one bit.

Once we have the Bloom filters for two emails, checking
for inclusion can be done very quickly. If email A contains
all the paragraphs in email B, all the bits that are set in
B’s Bloom filter would also be set in that of A. Hence, the
bitwise AND of the two Bloom filters should be the same
as B’s Bloom filter.

Of course, similar to using Bloom filters for set member-
ship test, this inclusion test can still have false positives.
Thus, after this test is passed, it is imperative to compare
the sets of digests from the two emails to conclude with
certainty that they indeed have an inclusion relation.

Blacklisting Uninteresting Paragraphs

A possible optimization is to ignore popular paragraphs
that do not contribute much in content. Examples of those
paragraphs include company names, greetings, gratitude,
signatures, advertisements (from webmails or eletronic de-
vices), boilerplates, and subscription information for mail-
ing lists. While technically their presence can affect in-
clusion decisions, these paragraphs can be ignored without
affecting the quality of filtering.

4 Experiments

In this section, we examine the proposed algorithm against
two datasets. We also investigate the effectiveness of re-
moving included emails and the performance improvement
from using Bloom filters.

4.1 Datasets

To understand the performance of the algorithm under dif-
ferent input, we evaluated it using two datasets: the Enron

4

email corpus and a mailing list dataset we created. This
subsection describes these two datasets and performs some
comparisons and analyses.

The Enron email corpus contains data from about 150
users, mostly senior management of the now-defunct com-
pany Enron Corporation [Klimt & Yang, 2004]. It was
originally made available by the Federal Energy Regulatory
Commission during its investigation. The data does not in-
clude attachments, and some emails have been deleted “as
part of a redaction effort due to requests from affected em-
ployees.” This serves as a corporate email trace.

The mailing lists dataset is collected from four mailing
lists at December 2007, consisting of mails from their
respective archive websites: The Cygwin project mail-
ing list archive [Cygwin, 2007], general Gentoo user sup-
port and discussion mailing list [Gentoo, 2007], MySQL
general discussion [MySQL, 2007], and qmail mailing
list [qmail, 2007]. This serves as a general email discus-
sion trace.

A basic summary of the two datasets is shown in Table 1.
Since both datasets contain duplications, a de-duplication
process is done by computing MD5 digests on the alphanu-
meric characters of each email. The bottom half of the table
shows the data after de-duplication. Note that less than half
of the emails remained after de-duplication in the Enron
corpus, but only less than 5% are removed in the mailing
list dataset. This is mostly because the Enron corpus in-
cludes the “Sent” folder of each user, and some emails are
sent to multiple users within the corpus.

Even though the two datasets are very different, they turn
out to possess similar properties. Below we compare some
of these properties.

4.1.1 Paragraph Length

Figure 2 shows the length distribution of distinct para-
graphs, measured in the number of alphanumeric charac-
ters. It shows that both datasets have similar fraction of
shorter paragraphs. However, the mailing list dataset has
more middle-sized paragraphs, whereas the Enron corpus
has more longer paragraphs.

The former is probably because all the mailing lists are re-
lated to programming and software and thus the mails often
contain moderately long code snippets. The latter can be at-
tributed to two reasons: (1) Some emails in the corpus were
converted from other formats to text, but during the conver-
sion paragraph margins were not properly retained; and (2)
some emails contain very long XML documents that are
stored in one large paragraph.

4.1.2 Paragraphs Per Email

Figure 3 shows the number of paragraphs per email. In both
datasets, most of the mails contain a small number of 10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

F
ra

ct
io

n
 o

f
p

ar
ag

ra
p
h

s

Paragraph length (grouped exponentially)

Enron
Mailing list

Figure 2: The length distribution of paragraphs, measured
in alphanumeric characters, grouped exponentially. The
two data sets have similar fraction of shorter paragraphs,
but the mailing list dataset has more middle-sized para-
graphs while the Enron corpus has more longer paragraphs.

paragraphs. The main difference between the two datasets
is that the Enron corpus has more shorter emails, likely due
to short personal notes and sending attachments between
colleagues. On the other hand, postings on mailing lists
usually contain at least a few paragraphs to describe or an-
swer the questions, or to include code snippets.

4.1.3 Correlation Between Size and Likelihood of
Inclusion

The size of an email, measured in either alphanumeric char-
acters or number of paragraphs, has a negative correlation
to the probability that it is included by another email. Fig-
ure 4 and 5 shows that most included emails are relatively
short (less than 100 alphanumeric characters or 10 para-
graphs).

4.1.4 Paragraph Occurrences

Figure 6 shows the number of occurrences of distinct para-
graphs over each entire repository. Note that for both
datasets, the frequency of appearance goes down logarith-
mically even as each group is growing exponentially in
size. Also, both curves have very long tails: The most com-
mon paragraph appeared in the Enron corpse 23,052 times,
whereas that for the mailing list dataset is 54,316.

Figure 7 shows the data in cumulative distribution curves.
Note that most paragraphs appeared only for a few times.
For example, for both datasets, less than 1% of the para-
graphs appeared more than 10 times. Thus, a small popular
threshold can be used to separate a small fraction of popu-
lar paragraphs from unpopular paragraphs.

Since many paragraphs appear many times across many
emails, a possible application of paragraph-based analysis

5

Table 1: The two datasets and their detailed properties. The bottom half shows the data after removing duplications.

Enron Mailing list
Data type Corporate emails Mailing list discussions

Number of emails 517,431 486,869
Total size (excluding headers) 961MB 680MB

Average size per email 1,858 bytes 1,397 bytes
Average number of paragraphs per email 8.32 9.62

Number of distinct paragraphs 1,020,319 1,916,744

Number of emails after removing duplications 248,517 464,766
Fraction of remaining emails 48.03% 95.46%

Total size of remaining emails 473MB 656MB

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

F
ra

ct
io

n
 o

f
p

ar
ag

ra
p
h

s

Number of paragraphs (grouped exponentially)

Enron
Mailing list

Figure 3: The distribution of the number of paragraphs per
email, grouped exponentially. The main The Enron corpus
has more shorter emails, likely due to short personal notes
and sending attachments between colleagues.

Table 2: Fraction of included emails that can be removed
before reviewing.

Enron Mailing list
No. of nonidentical items 248,517 464,766

Included items 50,787 87,544
Fraction of included items 20.4% 18.8%

is to perform de-duplication at the paragraph level. Specifi-
cally, paragraphs that are identical can be stored only once,
with duplicated paragraphs pointing to a common copy. We
performed an informal measurement on this feature. Even
after whole-item de-duplication and without compression,
this feature can reduce storage space by an additional 22–
28%.

4.2 Effectiveness of Filtering Included Emails

The goal of finding included emails is to reduce the volume
of data to be reviewed. We first determine how well this

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

F
ra

ct
io

n
 o

f
em

ai
ls

 t
h

at
 a

re
 i

n
cl

u
d

ed

Email length

Mailing list
Enron

Figure 4: The correlation between number of paragraphs
and the probability that it is included.

Table 3: Average running speed of the prototype algorithm.
These numbers do not include the disk I/O time for reading
the emails from disk.

Enron Mailing list
Without blacklist 2.01 MB/s 2.48 MB/s

With blacklist 2.64 MB/s 3.99 MB/s

idea may work in practice by measure the amount of emails
that are completely included and can thus be ignored during
e-discovery. Table 2 shows the fraction of included emails.
In both datasets, even after de-duplication, this amounts to
around 20% of the emails, all of which can be removed
without affecting the accuracy of reviewing.

4.3 Algorithm Performance

We built a prototype of the algorithm to get a handle of its
performance. The prototype is ran on a Windows XP desk-
top machine with a Pentium-4 3.4 GHz CPU. The prototype
uses Berkeley DB version 4.6.19 as a large hash table for
building inverted indices. The program and the database

6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

F
ra

ct
io

n
 o

f
em

ai
ls

 t
h

at
 a

re
 i

n
cl

u
d
ed

Number of paragraphs

Mailing list
Enron

Figure 5: The correlation between email length and the
probability that it is included.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

F
ra

ct
io

n
 o

f
p

ar
ag

ra
p

h
s

Number of appearances (grouped exponentially)

Enron
Mailing list

Figure 6: The distribution of occurrences of paragraphs,
grouped exponentially. For both datasets, the frequency
goes down logarithmically even as each group is expanded
exponentially.

is given enough memory so that it is always running en-
tirely in memory. The program is ran with and without a
blacklist, which is manually built to include 41 popular but
unimportant paragraphs.

Table 3 shows the running speed of the prototype averaged
over the entire datasets. Note that these numbers do not
including the time spent on reading emails from disk. The
table shows that the algorithm can process multi-MB per
second, fast enough to run in a real-time system. Also,
when employing a blacklist to ignore unimportant para-
graphs, the algorithm can run 31–61% faster.

Of course, the actual running speed for each email depends
on the size of the indices and whether the paragraphs in the
email are common. However, the prototype seems to scale
reasonably well over the datasets tested, as the last 1% of
the emails are only 40–50% slower than the first 1%.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 5 10 20 50 100

F
ra

ct
io

n
 o

f
p

ar
ag

ra
p
h

s

Number of appearances

Enron
Mailing list

Figure 7: The cumulative distribution of occurrences of
paragraphs. The dotted line shows a cutoff threshold of
10.

 0.1

 1

 10

 32 64 128 256 512

F
al

se
 p

o
si

ti
v

e
ra

te
 (

%
)

Bloom filter size (bits)

Enron
Mailing list

Figure 8: Effectiveness of Bloom filter for subset compar-
isons at different filter sizes. Similar to the original use
of Bloom filters, doubling the size of the filter reduces the
false positives by a factor.

The rest of this section shows two more micro-benchmarks
on two parameters used.

4.3.1 Bloom Filter

Bloom filter is used as a front layer to filter out email can-
didates that are not inclusions. In our prototype that used
a Bloom filter size of 16 bytes (128 bits), its false positive
rate is measured to 2% for the Enron corpus and 0.9% for
the mailing list trace. This shows that a Bloom filter can be
very effective even at a size much smaller than an average
email. It also allows us to filter out most candidates without
even looking at any of their digests.

While the effectiveness of Bloom filter is transpar-
ent, it is unclear how large it should be, as it is
difficult to analytically derive the false positive rate
and optimal Bloom filter size. The traditional analy-

7

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30

E
m

ai
l

co
m

p
ar

is
o
n

s
(l

o
g

 s
ca

le
)

Threshold for popular paragraphs

Mailing list
Enron

Figure 9: Filtering cost with different popular thresholds.
A zero threshold represents the case when there is no sep-
arate popular paragraph set. Observe that a reasonable
threshold reduces the filtering cost by a factor of 200.

sis [Broder & Mitzenmacher, 2002] is for set membership
test and is not applicable to our subset test. Moreover,
as unrelated emails often share common paragraphs, the
conditional probabilities in the analysis cannot be assumed
to be independent. Instead, we study the tradeoff by ex-
perimentally measuring the false positive rate at different
Bloom filter sizes.

The result is shown in Figure 8. Clearly, for both datasets,
the false positive rate is reduced by roughly the same factor
every time the Bloom filter size is doubled. This result is
similar to using Bloom filters for set membership test.

4.3.2 Popularity Threshold

Lastly, Figure 9 shows the cost of finding inclusions us-
ing different popular thresholds. The cost is measured in
terms of the number of full set comparisons (i.e., the num-
ber of times the Bloom filter test is passed) needed. For
both datasets, the number of comparisons reduced by two
orders of magnitude when a popular threshold is used and
is increased to 10, but remained roughly at the same level
when the threshold is further increased.

This shows the effectiveness of partitioning paragraphs into
popular and unpopular. When a popular threshold is used,
popular paragraphs are usually not used to find inclusion
candidates. This eliminates the worst case of iterating thou-
sands of emails just because they share a common popular
paragraph. However, when the threshold is too small, e.g.,
5, too many emails are classified into P (emails with only
popular paragraphs). Since popular paragraphs still cause
emails in P to be iterated, this would require a large num-
ber of comparisons.

5 Related Work

An alternative to finding inclusion is to group emails into
email threads, perhaps through header information or other
heuristics [Yeh & Harnly, 2006]. While this would provide
reviewers the same benefit of reviewing the same discus-
sion at a time, further comparisons are still needed to filter
out included emails. Moreover, these heuristic-based algo-
rithms may not be accurate, and are ineffective for emails
that are inherently not in the same thread, for example when
text is copied from one email and pasted into another.

Email signatures do not contain useful information, but
they may appear in many unrelated emails and cause slow-
down. A simple optimization is to remove these signatures
before running our algorithms using a signature extraction
algorithm [Carvalho & Cohen, 2004].

Fingerprinting techniques, e.g., Rabin fingerprint-
ing [Rabin, 1981], coupled with fingerprint selection
algorithms like Winnowing [Schleimer et al., 2003], can
similarly generate digests for finding emails that share
common portions. The same comparison algorithm can
then be applied for finding inclusions. Our paragraph-
based generation is more suitable for this application since
it exploits the fact that paragraphs are usually unmodified
in responses. Our algorithm guarantees to generate a
digest for each paragraph, no matter how short it is, and
only generates one digest for very long paragraph, which
reduces the number of comparisons but increases accuracy.

There are other machine-learning research that
work on email content. These includes auto-
matic clustering [Huang et al., 2004] and classifica-
tion [Surendran et al., 2005] and other techniques for
filtering spams [Joachims, 1999, Sahami et al., 1998].

6 Conclusions

In this paper, we used inclusions to filter emails for e-
discovery. We proposed a paragraph-based comparison to
find inclusions, and algorithms for performing comparisons
efficiently. Our experiment showed a 20% reduction of
number of emails to be reviewed in an e-discovery process.

While our algorithms for finding inclusions are indepen-
dent of the language used by the emails, the preprocessing
needs to be aware of the language, as it has to know how to
divide email content into paragraphs and remove format-
ting characters. Also, to remove extraneous text, it may
require the preprocessor to recognize quotation text in the
language used. Extending the preprocessor to other lan-
guages is left as future work.

8

References

[Black et al., 1999] Black, J., Halevi, S., Krawczyk, H.,
Krovetz, T., & Rogaway, P. (1999). UMAC: Fast and
secure message authentication. Advances in Cryptology
— CRYPTO ’99. Santa Barbara, CA.

[Bloom, 1970] Bloom, B. H. (1970). Space/time trade-offs
in hash coding with allowable errors. Communications
of the ACM, 13, 422–426.

[Broder & Mitzenmacher, 2002] Broder, A., & Mitzen-
macher, M. (2002). Network applications of Bloom fil-
ters: A survey. Proceedings of the 40th Annual Allerton
Conference on Communication, Control, and Comput-
ing. Urbana, IL.

[Carter & Wegman, 1979] Carter, J. L., & Wegman, M. N.
(1979). Universal classes of hash functions. Journal of
Computer and System Sciences, 18, 143–154.

[Carvalho & Cohen, 2004] Carvalho, V. R., & Cohen,
W. W. (2004). Learning to extract signature and reply
lines from email. Proceedings of the 1st Conference on
Email and Anti-Spam (CEAS). Mountain View, CA.

[Cygwin, 2007] Cygwin (2007). The Cygwin project
mailing list archives. Retrieved from http://
cygwin.com/ml/cygwin/.

[EDRM Group, 2008] EDRM Group (2008). The elec-
tronic discovery reference model (EDRM) projects.
http://edrm.net/.

[EMC, 2008] EMC (2008). EMC EmailXtender family.
http://www.emc.com/products/family/
email-xtender-family.htm.

[Fulbright, 2006] Fulbright (2006). Third annual litigation
trends survey findings. Fulbright & Jaworski L.L.P.

[Gentoo, 2007] Gentoo (2007). General Gentoo user sup-
port and discussion mailing list. Retrieved from http:
//archives.gentoo.org/gentoo-user/.

[Huang et al., 2004] Huang, Y., Govindaraju, D., Mitchell,
T., de Carvalho, V. R., & Cohen, W. (2004). Infer-
ring ongoing activities of workstation users by cluster-
ing email. Proceedings of the 1st Conference on Email
and Anti-Spam (CEAS). Mountain View, CA.

[Joachims, 1999] Joachims, T. (1999). Transductive in-
ference for text classification using support vector ma-
chines. Proceedings of 16th International Conference
on Machine Learning. Bled, Slovenia.

[Klimt & Yang, 2004] Klimt, B., & Yang, Y. (2004). Intro-
ducing the Enron corpus. Proceedings of the 1st Confer-
ence on Email and Anti-Spam (CEAS). Mountain View,
CA. Data available at http://www.cs.cmu.edu/
∼enron/.

[MySQL, 2007] MySQL (2007). MySQL general discus-
sion. Retrieved from http://lists.mysql.com/
mysql/.

[qmail, 2007] qmail (2007). qmail mailing list. Re-
trieved from http://www.ornl.gov/lists/
mailing-lists/qmail/.

[Rabin, 1981] Rabin, M. O. (1981). Fingerprinting by ran-
dom polynomials (Technical Report TR-15-81). Center
for Research in Computing Technology, Harvard Uni-
versity.

[Sahami et al., 1998] Sahami, M., Dumais, S., Hecker-
man, D., & Horvitz, E. (1998). A Bayesian approach to
filtering junk e-mail. Proceedings of the AAAI Workshop
on Learning for Text Categorization. Madison, Wiscon-
sin.

[Schleimer et al., 2003] Schleimer, S., Wilkerson, D. S., &
Aiken, A. (2003). Winnowing: Local algorithms for
document fingerprinting. Proceedings of the ACM SIG-
MOD International Conference on Management of Data
(SIGMOD). San Diego, CA.

[Supreme Court, 2006] Supreme Court (2006). Amend-
ments to the Federal rules of civil procedure.

[Surendran et al., 2005] Surendran, A. C., Platt, J. C., &
Renshaw, E. (2005). Automatic discovery of personal
topics to organize email. Proceedings of the 2nd Con-
ference on Email and Anti-Spam (CEAS). Palo Alto,
CA.

[Symantec, 2008] Symantec (2008). Symantec Enterprise
Vault. http://www.symantec.com/ev/.

[Yeh & Harnly, 2006] Yeh, J.-Y., & Harnly, A. (2006).
Email thread reassembly using similarity matching.
Proceedings of the 3rd Conference on Email and Anti-
Spam (CEAS). Mountain View, CA.

[ZANTAZ, 2008] ZANTAZ (2008). ZANTAZ Enterprise
Archive Solution. http://www.zantaz.com/
products/eas.php.

9

