
Breaking out of the Browser to Defend Against Phishing Attacks

D.K. Smetters and Paul Stewart
Palo Alto Research Center

3333 CoyoteHill Road
Palo Alto, CA 94304

{smetters,stewart}@parc.com

Abstract

Current approaches to phishing prevention
are focused on the web browser and the user’s
interaction with it. We present a new ap-
proach to allowing users to interact reliably
and securely with high-value and sensitive
web sites, using protected links – a user-
customizable set of secure bookmarks, that
not only identify but also authenticate their
targets. By combining visually distinctive
display to prevent spoofing, digitally sign-
ing these bookmarks to protect them from
tampering, and whitelisting of allowed book-
mark providers to ensure correctness, we en-
sure users end up with an intuitive interface
for accessing the sites they intend. We have
implemented a prototype protected links sys-
tem, and evaluated its usability with a small
study of potential users with positive results.

1 Introduction

Phishing web sites attempt to extract sensitive infor-
mation from users by masquerading as a site they
trust. Defending against such attacks requires pre-
venting the user from revealing sensitive data to the
attacker that he can use.

The core problem posed by phishing attacks is that the
user is sending sensitive data to someone other than
whom she intends. We refer to this as the “mismatch
problem”. Unfortunately, current phishing defenses do
not directly address the mismatch problem; instead
they try to provide further feedback about web sites
designed to enable users to solve it for themselves.

Blacklisting-style approaches try to help the user de-
tect and avoid “bad” web sites (e.g., (Microsoft Cor-
poration, 2008; Mozilla, 2008a)) on the simple heuris-
tic that such “bad” sites cannot possibly be who the

user intends to communicate with. However, in an
open universe of web sites, where users may legiti-
mately wish to access almost any of them, it is funda-
mentally too hard to distinguish accurately between
“obscure” or “new” and “bad”. False negatives and
positives are common (Zhang et al., 2007).

Browser cues designed to help users authenticate
“good” web sites (e.g., the SSL lock icon), and best-
practice behavioral heuristics (“always type the URL
directly into your web browser”) aim to help users de-
termine whether a site they have accessed is indeed
the one they intended. Unfortunately, they do not suc-
ceed – browser cues are often ignored (Friedman et al.,
2002; Dhamija et al., 2006; Whalen et al., 2006), and
can be spoofed (Ye et al., 2005), and heuristics can
fall to increasingly sophisticated attacks against DNS
(e.g., (Trend Micro, 2008; Wikipedia, 2008a)), where
even a user who heeds advice and types in their own
URLs can be misled.

1.1 Attacking the Mismatch Problem

We attack the mismatch problem directly. To do this,
we need to allow users to intuitively indicate who they
intend to communicate with in a way that can be se-
curely interpreted, and hence ensured, by systems op-
erating on their behalf.

Standard web browsers cannot do this; they are de-
signed to communicate with as many different web
sites and services as possible. When a user attempts
to access her bank by clicking on a link or access-
ing a bookmark, the browser can only determine what
site that (possibly incorrect or malicious) link actually
refers to – not what site the user believes it refers to.

Instead, consider the following: for each high-value
online site or service the user regularly accesses, he
obtains what is in effect a secure bookmark. We re-
fer to these as protected links. These links are repre-
sented to the user by well-known trademarks, logos,
and standard (registered) business names, not URLs



which bear varying resemblances to the site of interest
to the user.

Unlike traditional bookmarks, protected links identify
their targets not only by URL, but also by the public
keys of the servers involved. Accessing that service
via a protected link authenticates the service on the
user’s behalf; protected links cannot be fooled, even
in the face of attacks against the user’s DNS. They
ensure that the user only interacts with the service
they intend.

A user obtains a protected link for each high-value ser-
vice she regularly accesses. Links are obtained from a
service provider’s web site as part of the user’s initial
service enrollment, or from another entity with whom
they have an established trust relationship (e.g., their
antivirus vendor). Link legitimacy is ensured by a form
of whitelisting, preventing a user from installing a ma-
licious link. Each protected link is signed, and any
attempt (e.g., by crimeware) to alter a protected link
is detected and blocked. Finally, a user’s own set of
protected links is displayed together in a visually dis-
tinctive, personalized manner to prevent spoofing.

From the user’s point of view, these protected links ap-
pear almost as a set of dedicated “applications”, each
intended to perform a particular task such as inter-
acting with a particular bank. Users do not need to
learn a complex set of rules to detect attacks against
their high-value sites, only the simple heuristic that
“to access my bank account online, I must use my on-
line banking application”. Actually installing special-
purpose applications to connect with individual web
sites would be ineffective, costly, and difficult. Pro-
tected links are designed to give the user the intuitive
experience of interacting with such a special-purpose
application, while preserving a simple web develop-
ment and deployment model.

Protected links solve the mismatch problem, at least
for high-value web sites. They are designed to be user-
friendly and easily deployable. Results of an initial
usability study support the idea that they are intuitive
and easy for end users to understand.

In the remainder of the paper we analyze the security
requirements for an effective secure bookmarking sys-
tem in Section 2, and present our design for a system
that meets them (Section 3), and a prototype imple-
mentation of that system (Section 4). Our user eval-
uation is described in Section 5. We then describe
related work in Section 6, and conclude.

2 Security Requirements

Any secure bookmarking system attempting to solve
the mismatch problem, i.e., to ensure that the sites

users access are always the ones they intend, must
meet the following (informal) security requirements:

Identifiability: users should be able to easily deter-
mine the target of a protected link and match it to
their intent.

Distinguishability: users should be able to recog-
nize their protected links, even in the face of attempts
by malware to provide visually similar alternatives.

Correctness: the actual target of a link must match
the user’s understanding; in particular, the process for
obtaining new links must defend against attempts to
insert malicious links.

Accuracy: accessing a service via a protected link
must result in the user communicating only with its
intended target. Attacks that prevent correct com-
munication, such as manipulation of the user’s DNS
should result in an error.

Tamper Resistance: unauthorized modification of
protected links must be detected and the link disabled.

In addition, it should be difficult to disable or delete
protected links, as doing so might lead the user to de-
fault to less secure mechanisms of accessing her target.

3 System Design

We have designed a system architecture that meets
the security requirements of Section 2. Our protected
links system has three components:

• a set of protected links obtained by each user to
access their high-value sites

• a protected link toolbar application which presents
the available links to the user and enforces secu-
rity policies over those links

• a protected link browser : a limited environment
used to access the designated target of a protected
link.

3.1 Protected Links

A protected link, or secure bookmark, securely identi-
fies its intended target. It does so by registering to not
only its target URL, but also the public keys or digital
certificates of the (TLS-enabled) web servers autho-
rized to provide that target content. This achieves
our desired accuracy property; attempting to access
a service via a protected link in the face of DNS ma-
nipulation will result in a connection to a malicious



Figure 1: Our prototype Protected Links toolbar.

server which does not possess the required private key,
allowing the attack to be detected and the connection
aborted. Every protected link is also digitally signed
to provide tamper resistance.

Each protected link is identified to the user primarily
by a logo, trademark or other graphic selected by the
link provider; users do not have to interpret URLs, rec-
ognize domain names, or interpret digital certificates.
This allows for easy identifiability of the target of a
link. Corporations are typically much more mindful
of their logos and other symbols of corporate iden-
tity than of the domains they use, which may be con-
strained by details of their network that users should
not be asked to remember.

3.2 Protected Links Toolbar

A user’s protected links are presented in the form of a
protected links toolbar, an application which performs
three critical roles.

Accuracy. First, it is the toolbar which ensures ac-
curacy, by defending the user’s protected links against
alteration. It does so by verifying the signatures on
each link prior to each use, supplemented by contin-
ual monitoring for attempts to change them or to add
invalid links to the set. The user is prevented from
visiting any link whose signature fails to verify. At the
same time, because these links have user-interpretable
semantics, we can warn the user about such attacks
in intuitive terms (“An invalid web site is attempting
to alter your protected link to Citibank to point to an
unknown server. Operation not permitted.”).

Distinguishability. Second, if a user is to access
her high-value sites correctly via a protected link, she
must first be able to distinguish her “real” protected
links from attempts by malware to mislead her. This
means that scattering protected links across a user’s
desktop is unlikely to provide good security; even if
they are visually distinctive, small icons lost poten-
tially in a crowd of distractors would be hard to tell
from malicious look-alikes. Instead, we visually group
all the user’s protected links together in a bit of trusted
screen real estate, in the form of a toolbar (an example
can be seen in Figure 1), where only valid protected
links are displayed.

That toolbar itself is more difficult to spoof in its en-
tirety and can be monitored as part of, say, the anti-
virus software on the machine. Further protection can
be provided by personalizing the toolbar to the user
as part of installation (Dhamija & Tygar, 2005). For
example, a user might install a certain background im-
age or color scheme for her collection of protected links.
Malware attempting to spoof the user’s toolbar would
need to also match that personalization.

Correctness. The final, and most critical role for
the toolbar is to ensure correctness – to prevent the
user from being misled into obtaining a malicious link
that will lead them somewhere other than they intend.

Without analysis of what the user sees, such as the
icon associated with a link, we cannot distinguish a
malicious “mock Citibank” protected link from a le-
gitimate one. To ensure that users only end up with
correct links, we must limit who is allowed to publish
such links. We do so by requiring such links be signed
by an authorized entity, where “authorized entity” is
determined by the vendor of the toolbar. It could be
that vendor itself; or it could encompass a form of
delegation similar to a certification hierarchy, where
an organization would be authorized to sign protected
links used to access its own sites.

In essence, we are whitelisting the high-value sites of
the Internet. Whitelisting signed links, so that users
must, say, obtain them from their service provider
on enrollment rather than constructing them as with
standard bookmarks, allows review by trained profes-
sionals to “vet” those small number of good sites for
whom protected link status makes sense, and more
careful construction of the links themselves to ensure
they make sense to users.

Security of the protected link system therefore de-
pends not only on the integrity and correct operation
of the system components, but also on the set of pub-
lic keys used to validate membership in the whitelist.
This is a limited and defensible set of critical data,



much like that already relied on by a number of other
security- critical systems (e.g., root certificates for web
browsers, virus definition files for antivirus products),
which can be protected similarly.

3.3 Protected Link Browser

We use targeted and secured web links to interface
with the secure areas of banks’ and other institutions’
standard web sites, via a standalone, stripped-down
browser instance that is unconnected to the user’s nor-
mal web browser (see Figure 2). Because it shares
neither user data nor memory footprint with other
browser instances (secure or insecure), protected links
visited by the user are isolated both from the user’s
normal web browsing and from each other. Because
it is at its heart a browser, it supports current web
development models (and in fact can be deployed on
top of existing SSL-protected web sites largely without
change).

3.4 Deployment and Personalization

Our approach to protecting online interactions allows
for incremental real-world deployment. In its sim-
plest form, it can give value immediately, without any
change required on the part of the institutions whose
sites are the targets of protected links. As long as
the secure portion of those sites supports navigation
entirely via SSL, a protected link can easily be gen-
erated for each existing site by simply recording the
combination of URLs and public keys used by that
site’s servers at a given point in time. Such links are
generic – the same link information serves for any user
attempting to access that site; as such they could be
created and provided by the vendor of the protected
link toolbar, rather than the sites themselves.

For fuller protection, a cooperating site could dis-
tribute its own protected links, and even personalize
the links it distributes. Protected links can be per-
sonalized for the site they target, e.g., by customizing
the way they are rendered on the client to make them
look more like a standalone application, or by having
them target a special portion of the web site designed
for such access.

A more interesting option is to personalize protected
links for the user installing them. Such links could
include credentials to enable that user to access the
originating site – e.g., simple cookies, or even client
certificates and private keys.1

1As these credentials are to be used to access the site
that distributed them, simplifying the system by having
that site also generate the private key imposes little addi-
tional risk.

Personalizing protected links in this manner has a
number of advantages: first, it forms a very simple
(from the end user’s point of view) means of dis-
tributing client certificates, usually an onerous process.
Those client certificates allow further personalization,
e.g., by allowing the particular user/machine combi-
nation accessing a site to be recognized and authen-
ticated prior to any user information entry; allowing
early presentation of user-specific images or other cus-
tomization to enable mutual authentication. These
client certificates would normally not be sufficient to
log the user into the target site on its own; a user name
and password would still likely be required to protect
the user from unauthorized access to her account by
those in her immediate vicinity.

Finally, such personalized links would allow the target
site to determine when a user came in via a protected
link and and when they didn’t. In its full form, on-
line banks or other high-value sites simply would allow
standard web browsers only access to the bank’s public
web site, or limited (e.g., read-only) access. Attempts
to get at private account information would result in
invitations to enroll in online banking and install a
protected link.

3.5 Creating a New Link

The process of setting up a new protected link must
be no more difficult than current online banking en-
rollment. This is not a high bar; enrollment in on-
line banking or other high-value services has become
a significant, high-effort process as providers attempt
to protect themselves and their users. Users may also
need to answer challenge questions or otherwise repeat
an enrollment step each time they attempt to log in
from a new machine.

We can easily use the same enrollment mechanism to
set up protected links; instead of just establishing a
user name and password, the end result of enrollment
would also be a protected link file to install (e.g., by
double-clicking it).

3.6 Updating Protected Links

A final item to consider in deployability of such an
infrastructure is evolution. Because protected links
are simply portals into web sites, the “applications”
they represent are infinitely evolvable. The only thing
challenging to evolve are the links themselves - the
URLs and the keys they contain. In the absence of key
compromise, good coding and management practice
would allow web sites to go almost indefinitely without
having to update the contents of deployed protected
links.



Figure 2: Opening a protected site in our prototype limited browser.

However, in case they do need at some point to update
their information, it is simple to build an auto-update
mechanism into protected links. Each link could con-
tain information sufficient to access and authenticate a
site responsible for updating it; the toolbar could check
that site at regular intervals, automatically installing
any (signed) updates that are available.

4 Implementation

We have implemented a prototype protected links sys-
tem. Our initial toolbar application runs in Windows
XP, but the remainder of the components of our sys-
tem are either platform-independent (the protected
links themselves), or available on any platform (the
protected link browser and link generation tools).

4.1 Protected Link Toolbar

Our prototype toolbar can be seen in Figure 1; it sim-
ply displays the associated icon for each of the pro-
tected links the user has installed. A production tool-
bar might be visually more distinctive, and ideally be
personalized by the user on installation (e.g., with an
image, or other “skin” (Dhamija & Tygar, 2005; Bank
of America, 2006; Yahoo!, 2008)) to prevent spoofing.

On startup, the toolbar application looks for installed
protected links in a user-specific directory. For each
link found, it verifies that it is on the whitelist (i.e.,
signed by an accepted provider) and has not been tam-
pered with. For each verified link, it displays its asso-
ciated icon, provided by the link issuer. For each link
that fails to verify, the user is notified and offered the

opportunity to delete (but not to use) the link.

When a user double-clicks a protected link, its contents
are re-verified, and if valid, they are unpacked and its
target accessed via the protected link browser.

A user can download a new protected link from an en-
rollment page on their provider’s web site, or perhaps
from a directory offered by the vendor of their toolbar
software itself. In the former case, links can be person-
alized to that user (see Section 3.4), both in terms of
appearance when executed and by containing creden-
tials to authenticate that user/machine combination.
A link is installed by double-clicking it, the extension
given to link files (.slink) is associated with our tool-
bar application, which receives a message. The toolbar
application then verifies the link and unpacks it into
the user’s link directory.

Our prototype implementation uses an extremely sim-
ple approach to bootstrapping trust – all protected
links are signed by the same issuer, whose public key
is embedded in the toolbar application. A production
implementation would allow for more complex authen-
tication hierarchies, and would store the system ver-
ification keys in a more secure location The integrity
of those keys, and of the protected links system it-
self, would ideally be monitored (e.g., by the user’s
antivirus software or the OS itself).

4.2 Protected Links

Our protected links (named applicationname.slink) are
compressed archive files containing the components
shown in Figure 3.



BankOfAmerica.slink
|
+-- main.png (the application icon)
+-- profile.zip (the user profile)
+-- xulapp.zip (the XULRunner "app")
+-- manifest.txt (the SHA1 digests of the
| expected link contents)
+-- manifest.sig (a digital signature

on manifest.txt)

Figure 3: The contents of a protected link archive.
Descriptions to right.

Verification of a protected link requires first checking
that manifest.sig contains a valid signature on mani-
fest.txt, generated by a public whitelisting key known
to the protected links infrastructure. Second, the man-
ifest.txt file itself must be verified, by ensuring that
the link archive contains all and only the files listed
therein, and that the contents of those files match their
SHA-1 digests as listed (and signed).

Launching a protected link requires first reverifying it
to ensure that it has not been tampered with, and
then unpacking its various components into runnable
form. Our current implementation first deletes any
previously unpacked version of the link, except for any
profile-specific cookies that might have been installed
by previous executions of the protected link target,
and then replaces them with a fresh copy of the con-
tents of the protected link. This approach simplifies
runtime verification, as we do not need to check that
an existing unpacked file tree matches a link signature;
however it does so at the cost of a slight delay on link
execution (mostly due to unpacking of the link con-
tents, not signature verification). The protected link
browser is then invoked on the unpacked link.

This approach does open us up to a potential time-
of-check vs. time-of-use vulnerability, where targeted
malware could in theory modify our protected link con-
tents after verification and extraction, but prior to ex-
ecution. A production version of this software could
address this risk by monitoring the unpacked files for
modifications, and/or using a custom browser engine
that verifies the files in the course of executing them.

Link Generation Our prototype links are gener-
ated by a simple Perl script, which takes a template
set of protected link contents and customizes it for a
specific site. The generator is given the target URL the
link should open, and automatically retrieves the cer-
tificate for the web server serving that URL and stores
it in the trusted certificate store for the new link. The
generator can also be told about additional sites that
it should trust (e.g., secure caching proxies or advertis-

ing servers that provide some of the site’s content), and
insecure servers that the site relies on which it should
silently ignore (but whose content will not be provided
to the user). The generator is also given an icon file,
which provides the user-visible “face” of the protected
link, and can generate user-specific credentials, such as
a digital certificate and private key, and/or an initial
set of cookies. The generator then signs and packs the
link content for distribution.

4.3 Protected Link Browser

To implement a protected link browser engine (see sec-
tion 3), we use Mozilla XULRunner (Mozilla, 2008b),
the stripped-down core of the FireFox browser de-
signed to run standalone applications.2

Each of our “protected links” is in fact a full XULRun-
ner “application”. Such an application consists of a set
of user profile data, including its own separate cookies
file, browsing history, and its own certificate database
(cert.db file) which tells that instance of XULRunner
what certification authorities and web sites to trust
(compressed into profile.zip above). The “applica-
tion” (compressed into xulapp.zip above) also con-
tains its own set of add-ons or extensions, and a sep-
arate set of browser “chrome”. The resulting XUL-
Runner instances execute separately from each other
and from any running FireFox browser, and are not
affected by anything in the user’s standard FireFox
environment or profile.. Such applications are quite
small, about 40Kb in the compressed form in which
we distribute them.

We configure each XULRunner “link” to connect to a
particular URL, which causes that web site to open au-
tomatically when the XULRunner application is exe-
cuted (e.g., Figure 2). A setting in the profile informa-
tion contained in each XULRunner “link” constrains
these instances to only communicate using TLS; they
will refuse to open any insecure links. We preload
the certificate database of each “link” so that the cor-
responding XULRunner instance will only communi-
cate with the set of web servers specified by that pro-
tected link – namely those associated with the web site
of interest. Note that the certificate database allows
connections only to servers with specified end-entity
certificates; it does not have to indicate trust at the
level of their signing certification authorities (which
sign large numbers of certificates).

The fact that each link has its own certificate config-
uration that is downloaded with the link upon instal-
lation also gives us an easy mechanism for deploying
and using client certificates; as noted in Section 3.4,

2FireFox 3 also includes this functionality, removing the
need for a separate browser engine.



each protected link can be constructed specifically for
its user, and could include a certificate and private key
for that user to authenticate themselves to the site in
question. This approach might be significantly simpler
than traditional certificate enrollment mechanisms; as
the certificate would be used only to authenticate to
the target service, the fact that that service (the link
issuer) would also issue the user’s private key is not a
particular concern.

Our default XULRunner application template has each
link show only limited browser structure, or “chrome”,
allowing the user to navigate only within the site to
which the protected link points; both the absence of a
URL entry field and the underlying security configu-
ration prevent the user from attempting to use it as a
general purpose browser. Although the current imple-
mentation does not include forward and back buttons,
relying on site-internal navigation only, such buttons
could be added to either our default application tem-
plate or individual protected links.

Our prototype currently uses the same browser
“chrome” for all its protected links; however as this
is a component of the link itself it could be cus-
tomized. This would allow a site using a protected
link to look more like a branded application than a
standard browser window, although most of the con-
tent would still come over the web. Similarly, our
prototype uses the protected link browser to access
standard web sites, but a site could choose to provide
specialized content tailored to this means of access.
The result would still be considerably more flexible,
updatable, and maintainable than a traditional “thick
client” application.

Finally, because Firefox (and XULRunner’s) add-on,
or extension mechanism, installs extensions directly
into the user profile. This means that extensions can
be provided along with a protected link if the issuer
of that link prefers, and the user’s own extension se-
lections cannot interfere with access to protected links.
Because extensions can be installed by clicking on links
to them, users could install them into a running pro-
tected link browser even with the limited chrome we
provide. However, they would not persist across in-
vocations of the link. More appealingly, link issuers
could provide users with access to security-enhancing
extensions to protect their online experience with that
issuer (e.g., (Rubenking, 2007)), without requiring
the user to manually install additional software.

5 Evaluation

The design of our protected links system is based on
the assumption that framing access to high-value web
sites as secure bookmarks, or dedicated applications,

Question Response
Overall opinion 6± 0.6
Separate (non-browser) interface 5.7± 1.0
Would remember to use 6.3± 1.0
Confidence in security 5.6± 1.1

Table 1: User ratings of our protected links system
(means and standard deviations). Scores are on a 7-
point Likert scale, where 1 is most negative, and 7 is
most positive.

would be significantly more intuitive to end users than
asking them to monitor a plethora of browser-based
security indicators. In order to test that assumption,
and to assess whether users would be willing to “break
out of their browsers” to interact with some web ser-
vices, we performed a simple usability evaluation of
our prototype.

Ten subjects were recruited from within our organiza-
tion. They were selected to cover a range of knowledge
of computers and security. We asked them a number
of questions about their online behavior, and then ex-
plained to them the purpose and basic functions of our
software.

Subjects were then asked to perform a set of simple
tasks with the prototype: exploring the toolbar and
opening one or more protected links to common phish-
ing targets such as large banks, PayPal, or eBay; visit-
ing a simulated enrollment page for a well-known bank
and enrolling for a new protected link, which they were
then to double-click to install, and open to access the
“bank” site. Finally, we had them access a simulated
phishing site, and attempt to install a “malicious” link,
which was prevented by our software. At the end, they
were asked for their opinions about the prototype. As
our current prototype is not highly polished, we were
interested more in their reaction to the idea as a whole
than our specific implementation.

All but one of our subjects use or have used online
banking, and most pay bills online and use PayPal and
eBay. All reported familiarity with phishing attacks.
Rating themselves on a seven-point Likert scale, where
1 is “no experience” and 7 is “expert”, our subjects on
average rate their experience with computers as 5.4±
0.9, and with security 3.4 ± 1.3. Their reported level
of concern with online threats such as phishing and
identity theft was 5.2 ± 1.4 (where 1 is “no concern”
and 7 is “extremely concerned”).

Subjects had a positive overall impression of the pro-
tected links approach (results shown in Table 1).
While we were concerned that accessing high-value
sites through a specialized interface instead of through
the usual web browser might seem onerous, the ma-



jority of our subjects responded very positively to it.
One subject reported that the use of a separate tool-
bar gave them an “extra level of confidence”. Subjects
also believe that they would be likely to remember to
use a protected links toolbar, even if their services still
offered less secure password-based login.

Confidence in the security of the toolbar mechanism
itself depended critically on branding – if the user ob-
tained the toolbar from a vendor they trusted and it
was branded appropriately, they had high confidence
that it would ensure their secure access to their in-
tended targets (Table 1, “Confidence”). Without ap-
propriate branding, confidence decreased. Similarly,
subjects rated themselves as much more likely to in-
stall this software if it came from a trusted source,
such as their bank, their firewall or antivirus vendor,
or Google. Interestingly, subjects varied as to which
of these sources they found most trustworthy.

These results suggest that our general approach is in-
deed sound, intuitive and appealing, but underscore
the importance of branding in establishing initial trust.
Subjects also reported to us that improving the feed-
back from the toolbar about its operation and security
would also improve their confidence.

6 Related Work

In this section, we review other approaches to phishing
defense, and discuss additional related work.

Anti-Phishing A large fraction of defenses against
phishing fall into one of three classes. User educa-
tion: train users learn to identify “bad” (phishing)
sites, and to follow best practices designed to help en-
sure they end up at their intended web targets (Ku-
maraguru et al., 2007; Sheng et al., 2007; Srikwan &
Jakobsson, 2008). Blacklisting: automatically recog-
nize “bad” sites, and warn users about them or, if suf-
ficiently confident, prevent them from visiting those
sites entirely (Sutton, 2008; Microsoft Corporation,
2008; Mozilla, 2008a; Moore & Clayton, 2007; Zhang
et al., 2007; Herzberg & Gbara, 2004; Close, 2006).
Improved User cues: improve the technology of web
browsers and/or web sites to help users distinguish
“bad” sites from legitimate ones (Dhamija & Tygar,
2005; Bank of America, 2006; Chou et al., 2004).

Many of these approaches have significant limitations.
Blacklisting approaches suffer from frequent false neg-
atives and positives (Zhang et al., 2007), and their
reports are often ignored by users (Wu et al., 2006a).
Similarly, improved user cues are also often ignored or
misunderstood (Schechter et al., 2007; Jackson et al.,
2007), or depend on mechanisms that are insecurely
implemented (Vamosi, 2007; SecuritySpace, 2008).

Secure Bookmarks Protected links are at their
core secure bookmarks, by which we mean bookmarks
that not only identify but also authenticate their
targets. Though there exist a number of systems
for synchronizing user bookmarks between machines
(e.g., (Google Labs, 2008; Project, 2008)), their in-
terest in security is limiting unauthorized access to a
user’s bookmark collection, not protecting bookmark
integrity, or assuring correct access.

In essence, establishing trust by linking directly to the
public key or certifier of a web target is a simple mech-
anism for building a localized web of trust for the In-
ternet. There are other systems which remember and
authenticate the public keys of web servers on users’
behalf, e.g., to control the release of cookie informa-
tion (Masone et al., 2007; Karlof et al., 2007a), to au-
thenticate the same origin policy for controlling web
site behavior (Karlof et al., 2007b), or to indicate
to users whether they are interacting with a web site
with whom they have a preexisting relationship (Close,
2006; Yee & Sitaker, 2006).

Identifiability and Distinguishability Much of
the design of our protected links system centers around
identifiability – ensuring that users can recognize the
target of a link, by using logos and other well known
marks, and distinguishability – visually separating,
and personalizing a user’s links to prevent spoofing.

Efforts to incorporate logos into digital certificates to
increase users’ ability to understand them (Santesson
et al., 2004) adds support for our approach of identi-
fying protected link targets to users by logo. However,
we make that logo the primary interface element the
user interacts with, rather than embedding it into the
technical details of a connection she’s already made.

The risk of spoofing of security indicators is well known
(e.g., (Ye et al., 2005; Wu et al., 2006b)). Person-
alization of sites and security components is one ap-
proach to make spoofing more difficult (Dhamija &
Tygar, 2005; Bank of America, 2006; Yahoo!, 2008).
However, attempts to personalize sites to allow users
to authenticate them appears to fail in practice –
users do not notice the absence of such security in-
dicators even when they have been trained to expect
them (Schechter et al., 2007). As our security compo-
nents are functional – users click them to get access
to the sites they need – rather than merely providing
feedback, we think it more likely that users will notice
their absence or warnings about their manipulation.
This is particularly true if they were fully deployed as
the only means of accessing one’s high-value sites.

Internet Whitelisting Whitelisting of protected
links – accepting such links only if they are signed by a



trusted third party – has a certain similarity to digital
certificates, and in particular so-called “extended val-
idation” (EV) certificates where the certificate signer
“vets” the holder and contents prior to issuing the cer-
tificate (Wikipedia, 2008b). However, there are two
major differences. First, what is being signed here is
a bookmark, something a user can understand and in-
teracts directly with in order to perform their intended
task, rather than a digital certificate, something which
is buried in the details of a security protocol. The re-
sult is that protected links are significantly more intu-
itive.

Second, by isolating our protected links in a separate
toolbar, we can perform binary whitelisting – links
that do not meet the whitelisting criteria simply do
not appear. Extended validation (EV) or other SSL
certificates are used to authenticate the only small per-
centage of connections a user makes with their web
browser which are secure. The browser cannot pre-
vent connections to sites without EV certificates. This
leaves the user to figure out on their own what sites
ought to have what sort of certificates, and what to do
if they don’t. Again, our policy is much simpler and
easier to understand.

Browser Security From the point of view of the
user, their protected links effectively act as site-specific
browsers (SSBs) (Finkle, 2007), a convenient user in-
terface fiction that presents a web site to a user as if
it were a separate application. Standard SSBs run
in separated browser instances to prevent errors in
one site from crashing another; we also do so to pro-
tect sites from others’ potential malicious behavior. A
number of recent products have attempted to achieve
the same end through in-browser sandboxing – access-
ing individual web sites within a protected “bubble”
within the same browser, and removing all effects of
that visit from the machine after it is complete (Green
Border Technologies, 2008; Rubenking, 2007).

These and other tools designed to protect the user
and their data from malicious web sites, e.g., password
managers (Yee & Sitaker, 2006; Wu et al., 2006b; Ross
et al., 2005), and antikeylogger software (Rubenking,
2007) are complimentary to our approach. In fact, as
many of them are packaged as FireFox extensions, they
can be deployed transparently as part of our current
prototype, by incorporating them directly into pro-
tected links.

7 Conclusion

In this paper, we have presented protected links, a new
approach to phishing defense. Our approach combines
secure bookmarks that authenticate their targets, with

visually distinctive display to prevent spoofing of se-
cure bookmarks, automatic verification of bookmark
integrity to prevent tampering, and whitelisting of al-
lowed bookmarks to ensure that users are not mis-
led into bookmarking malicious sites. The result is a
simple, intuitive mechanism for solving the “mismatch
problem” and ensuring that users access the sites they
intend. Results of an initial user evaluation suggest
that our approach is indeed intuitive and appealing;
though longer-running deployment studies are needed
to truly evaluate its potential impact.

Acknowledgements

We would like to thank Victoria Bellotti and Brinda Dalal
for help with our user evaluation, and Markus Jakobsson
and Ignacio Solis for useful discussion.

References

Bank of America (2006). How bank of america sitekey
works for online banking security. http://www.
bankofamerica.com/privacy/sitekey/.

Chou, N., Ledesma, R., Teraguchi, Y., & Mitchell, J. C.
(2004). Client-side defense against web-based identity
theft. NDSS ’04: Proceedings of the 11th Annual 2004
Network and Distributed Systems Security Symposium.

Close, T. (2006). Petname tool: Enabling web site recogni-
tion using the existing SSL infrastructure. W3C Work-
shop on Transparency and Usability of Web Authentica-
tion. New York City.

Dhamija, R., & Tygar, J. D. (2005). The battle against
phishing: Dynamic security skins. SOUPS ’05: Pro-
ceedings of the 2005 symposium on Usable privacy and
security (pp. 77–88). New York, NY, USA: ACM.

Dhamija, R., Tygar, J. D., & Hearst, M. (2006). Why
phishing works. CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems (pp.
581–590). New York, NY, USA: ACM.

Finkle, M. (2007). Site specific browser - webrun-
ner. http://starkravingfinkle.org/blog/2007/03/
site-specific-browser-webrunner/.

Friedman, B., Hurley, D., Howe, D. C., Felten, E., & Nis-
senbaum, H. (2002). Users’ conceptions of web secu-
rity: a comparative study. CHI ’02: CHI ’02 extended
abstracts on Human factors in computing systems (pp.
746–747). New York, NY, USA: ACM.

Google Labs (2008). Google Browser Sync. http://www.
google.com/tools/firefox/browsersync/.

Green Border Technologies, I. (2008). Greenborder.
http://www.greenborder.com. Recently purchased by
Google.

Herzberg, A., & Gbara, A. (2004). Security and iden-
tification indicators for browsers against spoofing and
phishing attacks (Technical Report 2004/155). ePrint
Archives.



Jackson, C., Simon, D., Tan, D., & Barth, A. (2007). An
evaluation of extended validation and picture-in-picture
phishing attacks. Proceedings of Usable Security 2007
(USEC ’07).

Karlof, C., Shankar, U., Tygar, D., & Wagner, D. (2007a).
Locked cookies: Web authentication security against
phishing, pharming, and active attacks (Technical Re-
port UCB/EECS-2007-25). University of California at
Berkeley.

Karlof, C., Shankar, U., Tygar, J. D., & Wagner, D.
(2007b). Dynamic pharming attacks and locked same-
origin policies for web browsers. CCS ’07: Proceedings
of the 14th ACM conference on Computer and commu-
nications security (pp. 58–71). New York, NY, USA:
ACM.

Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L. F.,
Hong, J., & Nunge, E. (2007). Protecting people from
phishing: the design and evaluation of an embedded
training email system. CHI ’07: Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems (pp. 905–914). New York, NY, USA: ACM.

Masone, C., Baek, K.-H., & Smith, S. W. (2007). WSKE:
Webserver-key-enabled cookies. Proceedings of Usable
Security 2007 (USEC ’07).

Microsoft Corporation (2008). Windows internet explorer.
http://www.microsoft.com/windows/products/
winfamily/ie/tax/default.mspx.

Moore, T., & Clayton, R. (2007). Examining the impact of
website take-down on phishing. eCrime ’07: Proceedings
of the anti-phishing working groups 2nd annual eCrime
researchers summit (pp. 1–13). New York, NY, USA:
ACM.

Mozilla (2008a). Phishing protection. http://www.
mozilla.com/en-US/firefox/phishing-protection/.

Mozilla (2008b). XULRunner. http://developer.
mozilla.org/en/docs/XULRunner.

Project, C. (2008). Chipmark. https://www.chipmark.
com/Main.

Ross, B., Jackson, C., Miyake, N., Boneh, D., & Mitchell,
J. C. (2005). Stronger password authentication using
browser extensions. Proceedings of the 14th USENIX
Security Symposium (pp. 2–2). Berkeley, CA, USA:
USENIX Association.

Rubenking, N. J. (2007). Zonealarm ForceField beta.
http://www.pcmag.com/article2/0,2817,2186628,
00.asp.

Santesson, S., Housley, R., & Freeman, T. (2004). Internet
X.509 public key infrastructure: Logotypes in x.509 cer-
tificates. IETF - Security Working Group, The Internet
Society. RFC 3709.

Schechter, S. E., Dhamija, R., Ozment, A., & Fischer, I.
(2007). The emperor’s new security indicators. SP ’07:
Proceedings of the 2007 IEEE Symposium on Security
and Privacy (pp. 51–65). Washington, DC, USA: IEEE
Computer Society.

SecuritySpace (2008). Secure server survey.
http://www.securityspace.com/s\ survey/sdata/
200712/certca.html.

Sheng, S., Magnien, B., Kumaraguru, P., Acquisti, A., Cra-
nor, L. F., Hong, J., & Nunge, E. (2007). Anti-phishing
phil: the design and evaluation of a game that teaches
people not to fall for phish. SOUPS ’07: Proceedings of
the 3rd symposium on Usable privacy and security (pp.
88–99). New York, NY, USA: ACM.

Srikwan, S., & Jakobsson, M. (2008). Using cartoons to
teach internet security. Cryptologia, 32.

Sutton, M. (2008). A tour of the google blacklist. http:
//portal.spidynamics.com/blogs/msutton/archive/
2007/01/04/A-Tour-of-the-Google-Blacklist.aspx.

Trend Micro (2008). Rogue domain name system
servers. http://blog.trendmicro.com/rogue-domain-
name-system-servers-5breposted5d/.

Vamosi, R. (2007). How phishers defeat online bank-
ing controls. http://reviews.cnet.com/4520-3513
7-6762995-1.html.

Whalen, T., Smetters, D., & Churchill, E. F. (2006). User
experiences with sharing and access control. CHI ’06:
CHI ’06 extended abstracts on Human factors in com-
puting systems (pp. 1517–1522). New York, NY, USA:
ACM.

Wikipedia (2008a). DNS cache poisoning. http://en.
wikipedia.org/wiki/DNS\ cache\ poisoning.

Wikipedia (2008b). Extended validation cer-
tificates. http://en.wikipedia.org/wiki/
Extended Validation Certificate.

Wu, M., Miller, R. C., & Garfinkel, S. L. (2006a). Do se-
curity toolbars actually prevent phishing attacks? CHI
’06: Proceedings of the SIGCHI conference on Human
Factors in computing systems (pp. 601–610). New York,
NY, USA: ACM.

Wu, M., Miller, R. C., & Little, G. (2006b). Web wallet:
preventing phishing attacks by revealing user intentions.
SOUPS ’06: Proceedings of the second symposium on
Usable privacy and security (pp. 102–113). New York,
NY, USA: ACM Press.

Yahoo! (2008). What is a sign-in seal? http://security.
yahoo.com/article.html?aid=2006102507.

Ye, Z. E., Smith, S., & Anthony, D. (2005). Trusted paths
for browsers. ACM Trans. Inf. Syst. Secur., 8, 153–186.

Yee, K.-P., & Sitaker, K. (2006). Passpet: convenient pass-
word management and phishing protection. SOUPS ’06:
Proceedings of the second symposium on Usable privacy
and security (pp. 32–43). New York, NY, USA: ACM
Press.

Zhang, Y., Egelman, S., Cranor, L., & Hong, J. (2007).
Phinding phish: Evaluating anti-phishing tools. NDSS
’07: Proceedings of the 14th Annual Network and Dis-
tributed System Security Symposium.


